| Step | Hyp | Ref | Expression | 
						
							| 1 |  | idressubmefmnd.g |  |-  G = ( EndoFMnd ` A ) | 
						
							| 2 |  | idresefmnd.e |  |-  E = ( G |`s { ( _I |` A ) } ) | 
						
							| 3 | 1 | idressubmefmnd |  |-  ( A e. V -> { ( _I |` A ) } e. ( SubMnd ` G ) ) | 
						
							| 4 | 1 | efmndmnd |  |-  ( A e. V -> G e. Mnd ) | 
						
							| 5 |  | eqid |  |-  ( Base ` G ) = ( Base ` G ) | 
						
							| 6 |  | eqid |  |-  ( 0g ` G ) = ( 0g ` G ) | 
						
							| 7 |  | eqid |  |-  ( G |`s { ( _I |` A ) } ) = ( G |`s { ( _I |` A ) } ) | 
						
							| 8 | 5 6 7 | issubm2 |  |-  ( G e. Mnd -> ( { ( _I |` A ) } e. ( SubMnd ` G ) <-> ( { ( _I |` A ) } C_ ( Base ` G ) /\ ( 0g ` G ) e. { ( _I |` A ) } /\ ( G |`s { ( _I |` A ) } ) e. Mnd ) ) ) | 
						
							| 9 | 4 8 | syl |  |-  ( A e. V -> ( { ( _I |` A ) } e. ( SubMnd ` G ) <-> ( { ( _I |` A ) } C_ ( Base ` G ) /\ ( 0g ` G ) e. { ( _I |` A ) } /\ ( G |`s { ( _I |` A ) } ) e. Mnd ) ) ) | 
						
							| 10 |  | snex |  |-  { ( _I |` A ) } e. _V | 
						
							| 11 | 2 5 | ressbas |  |-  ( { ( _I |` A ) } e. _V -> ( { ( _I |` A ) } i^i ( Base ` G ) ) = ( Base ` E ) ) | 
						
							| 12 | 10 11 | mp1i |  |-  ( A e. V -> ( { ( _I |` A ) } i^i ( Base ` G ) ) = ( Base ` E ) ) | 
						
							| 13 |  | inss2 |  |-  ( { ( _I |` A ) } i^i ( Base ` G ) ) C_ ( Base ` G ) | 
						
							| 14 | 12 13 | eqsstrrdi |  |-  ( A e. V -> ( Base ` E ) C_ ( Base ` G ) ) | 
						
							| 15 | 2 | eqcomi |  |-  ( G |`s { ( _I |` A ) } ) = E | 
						
							| 16 | 15 | eleq1i |  |-  ( ( G |`s { ( _I |` A ) } ) e. Mnd <-> E e. Mnd ) | 
						
							| 17 | 16 | biimpi |  |-  ( ( G |`s { ( _I |` A ) } ) e. Mnd -> E e. Mnd ) | 
						
							| 18 | 17 | 3ad2ant3 |  |-  ( ( { ( _I |` A ) } C_ ( Base ` G ) /\ ( 0g ` G ) e. { ( _I |` A ) } /\ ( G |`s { ( _I |` A ) } ) e. Mnd ) -> E e. Mnd ) | 
						
							| 19 | 14 18 | anim12ci |  |-  ( ( A e. V /\ ( { ( _I |` A ) } C_ ( Base ` G ) /\ ( 0g ` G ) e. { ( _I |` A ) } /\ ( G |`s { ( _I |` A ) } ) e. Mnd ) ) -> ( E e. Mnd /\ ( Base ` E ) C_ ( Base ` G ) ) ) | 
						
							| 20 | 19 | ex |  |-  ( A e. V -> ( ( { ( _I |` A ) } C_ ( Base ` G ) /\ ( 0g ` G ) e. { ( _I |` A ) } /\ ( G |`s { ( _I |` A ) } ) e. Mnd ) -> ( E e. Mnd /\ ( Base ` E ) C_ ( Base ` G ) ) ) ) | 
						
							| 21 | 9 20 | sylbid |  |-  ( A e. V -> ( { ( _I |` A ) } e. ( SubMnd ` G ) -> ( E e. Mnd /\ ( Base ` E ) C_ ( Base ` G ) ) ) ) | 
						
							| 22 | 3 21 | mpd |  |-  ( A e. V -> ( E e. Mnd /\ ( Base ` E ) C_ ( Base ` G ) ) ) |