Metamath Proof Explorer


Theorem idresperm

Description: The identity function restricted to a set is a permutation of this set. (Contributed by AV, 17-Mar-2019)

Ref Expression
Hypothesis idresperm.g
|- G = ( SymGrp ` A )
Assertion idresperm
|- ( A e. V -> ( _I |` A ) e. ( Base ` G ) )

Proof

Step Hyp Ref Expression
1 idresperm.g
 |-  G = ( SymGrp ` A )
2 f1oi
 |-  ( _I |` A ) : A -1-1-onto-> A
3 eqid
 |-  ( Base ` G ) = ( Base ` G )
4 1 3 elsymgbas
 |-  ( A e. V -> ( ( _I |` A ) e. ( Base ` G ) <-> ( _I |` A ) : A -1-1-onto-> A ) )
5 2 4 mpbiri
 |-  ( A e. V -> ( _I |` A ) e. ( Base ` G ) )