Step |
Hyp |
Ref |
Expression |
1 |
|
idressubgsymg.g |
|- G = ( SymGrp ` A ) |
2 |
|
idrespermg.e |
|- E = ( G |`s { ( _I |` A ) } ) |
3 |
1
|
idressubgsymg |
|- ( A e. V -> { ( _I |` A ) } e. ( SubGrp ` G ) ) |
4 |
|
eqid |
|- ( Base ` G ) = ( Base ` G ) |
5 |
1 4
|
pgrpsubgsymgbi |
|- ( A e. V -> ( { ( _I |` A ) } e. ( SubGrp ` G ) <-> ( { ( _I |` A ) } C_ ( Base ` G ) /\ ( G |`s { ( _I |` A ) } ) e. Grp ) ) ) |
6 |
|
snex |
|- { ( _I |` A ) } e. _V |
7 |
2 4
|
ressbas |
|- ( { ( _I |` A ) } e. _V -> ( { ( _I |` A ) } i^i ( Base ` G ) ) = ( Base ` E ) ) |
8 |
6 7
|
mp1i |
|- ( A e. V -> ( { ( _I |` A ) } i^i ( Base ` G ) ) = ( Base ` E ) ) |
9 |
|
inss2 |
|- ( { ( _I |` A ) } i^i ( Base ` G ) ) C_ ( Base ` G ) |
10 |
8 9
|
eqsstrrdi |
|- ( A e. V -> ( Base ` E ) C_ ( Base ` G ) ) |
11 |
2
|
eqcomi |
|- ( G |`s { ( _I |` A ) } ) = E |
12 |
11
|
eleq1i |
|- ( ( G |`s { ( _I |` A ) } ) e. Grp <-> E e. Grp ) |
13 |
12
|
biimpi |
|- ( ( G |`s { ( _I |` A ) } ) e. Grp -> E e. Grp ) |
14 |
13
|
adantl |
|- ( ( { ( _I |` A ) } C_ ( Base ` G ) /\ ( G |`s { ( _I |` A ) } ) e. Grp ) -> E e. Grp ) |
15 |
10 14
|
anim12ci |
|- ( ( A e. V /\ ( { ( _I |` A ) } C_ ( Base ` G ) /\ ( G |`s { ( _I |` A ) } ) e. Grp ) ) -> ( E e. Grp /\ ( Base ` E ) C_ ( Base ` G ) ) ) |
16 |
15
|
ex |
|- ( A e. V -> ( ( { ( _I |` A ) } C_ ( Base ` G ) /\ ( G |`s { ( _I |` A ) } ) e. Grp ) -> ( E e. Grp /\ ( Base ` E ) C_ ( Base ` G ) ) ) ) |
17 |
5 16
|
sylbid |
|- ( A e. V -> ( { ( _I |` A ) } e. ( SubGrp ` G ) -> ( E e. Grp /\ ( Base ` E ) C_ ( Base ` G ) ) ) ) |
18 |
3 17
|
mpd |
|- ( A e. V -> ( E e. Grp /\ ( Base ` E ) C_ ( Base ` G ) ) ) |