Metamath Proof Explorer


Theorem idressubgsymg

Description: The singleton containing only the identity function restricted to a set is a subgroup of the symmetric group of this set. (Contributed by AV, 17-Mar-2019)

Ref Expression
Hypothesis idressubgsymg.g
|- G = ( SymGrp ` A )
Assertion idressubgsymg
|- ( A e. V -> { ( _I |` A ) } e. ( SubGrp ` G ) )

Proof

Step Hyp Ref Expression
1 idressubgsymg.g
 |-  G = ( SymGrp ` A )
2 1 symgid
 |-  ( A e. V -> ( _I |` A ) = ( 0g ` G ) )
3 2 sneqd
 |-  ( A e. V -> { ( _I |` A ) } = { ( 0g ` G ) } )
4 1 symggrp
 |-  ( A e. V -> G e. Grp )
5 eqid
 |-  ( 0g ` G ) = ( 0g ` G )
6 5 0subg
 |-  ( G e. Grp -> { ( 0g ` G ) } e. ( SubGrp ` G ) )
7 4 6 syl
 |-  ( A e. V -> { ( 0g ` G ) } e. ( SubGrp ` G ) )
8 3 7 eqeltrd
 |-  ( A e. V -> { ( _I |` A ) } e. ( SubGrp ` G ) )