Description: The singleton containing only the identity function restricted to a set is a subgroup of the symmetric group of this set. (Contributed by AV, 17-Mar-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | idressubgsymg.g | |- G = ( SymGrp ` A ) |
|
| Assertion | idressubgsymg | |- ( A e. V -> { ( _I |` A ) } e. ( SubGrp ` G ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | idressubgsymg.g | |- G = ( SymGrp ` A ) |
|
| 2 | 1 | symgid | |- ( A e. V -> ( _I |` A ) = ( 0g ` G ) ) |
| 3 | 2 | sneqd | |- ( A e. V -> { ( _I |` A ) } = { ( 0g ` G ) } ) |
| 4 | 1 | symggrp | |- ( A e. V -> G e. Grp ) |
| 5 | eqid | |- ( 0g ` G ) = ( 0g ` G ) |
|
| 6 | 5 | 0subg | |- ( G e. Grp -> { ( 0g ` G ) } e. ( SubGrp ` G ) ) |
| 7 | 4 6 | syl | |- ( A e. V -> { ( 0g ` G ) } e. ( SubGrp ` G ) ) |
| 8 | 3 7 | eqeltrd | |- ( A e. V -> { ( _I |` A ) } e. ( SubGrp ` G ) ) |