Description: The singleton containing only the identity function restricted to a set is a submonoid of the monoid of endofunctions on this set. (Contributed by AV, 17-Feb-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | idressubmefmnd.g | |- G = ( EndoFMnd ` A ) | |
| Assertion | idressubmefmnd | |- ( A e. V -> { ( _I |` A ) } e. ( SubMnd ` G ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | idressubmefmnd.g | |- G = ( EndoFMnd ` A ) | |
| 2 | 1 | efmndid | |- ( A e. V -> ( _I |` A ) = ( 0g ` G ) ) | 
| 3 | 2 | sneqd |  |-  ( A e. V -> { ( _I |` A ) } = { ( 0g ` G ) } ) | 
| 4 | 1 | efmndmnd | |- ( A e. V -> G e. Mnd ) | 
| 5 | eqid | |- ( 0g ` G ) = ( 0g ` G ) | |
| 6 | 5 | 0subm |  |-  ( G e. Mnd -> { ( 0g ` G ) } e. ( SubMnd ` G ) ) | 
| 7 | 4 6 | syl |  |-  ( A e. V -> { ( 0g ` G ) } e. ( SubMnd ` G ) ) | 
| 8 | 3 7 | eqeltrd |  |-  ( A e. V -> { ( _I |` A ) } e. ( SubMnd ` G ) ) |