Step |
Hyp |
Ref |
Expression |
1 |
|
idrhm.b |
|- B = ( Base ` R ) |
2 |
|
id |
|- ( R e. Ring -> R e. Ring ) |
3 |
|
ringgrp |
|- ( R e. Ring -> R e. Grp ) |
4 |
1
|
idghm |
|- ( R e. Grp -> ( _I |` B ) e. ( R GrpHom R ) ) |
5 |
3 4
|
syl |
|- ( R e. Ring -> ( _I |` B ) e. ( R GrpHom R ) ) |
6 |
|
eqid |
|- ( mulGrp ` R ) = ( mulGrp ` R ) |
7 |
6
|
ringmgp |
|- ( R e. Ring -> ( mulGrp ` R ) e. Mnd ) |
8 |
6 1
|
mgpbas |
|- B = ( Base ` ( mulGrp ` R ) ) |
9 |
8
|
idmhm |
|- ( ( mulGrp ` R ) e. Mnd -> ( _I |` B ) e. ( ( mulGrp ` R ) MndHom ( mulGrp ` R ) ) ) |
10 |
7 9
|
syl |
|- ( R e. Ring -> ( _I |` B ) e. ( ( mulGrp ` R ) MndHom ( mulGrp ` R ) ) ) |
11 |
5 10
|
jca |
|- ( R e. Ring -> ( ( _I |` B ) e. ( R GrpHom R ) /\ ( _I |` B ) e. ( ( mulGrp ` R ) MndHom ( mulGrp ` R ) ) ) ) |
12 |
6 6
|
isrhm |
|- ( ( _I |` B ) e. ( R RingHom R ) <-> ( ( R e. Ring /\ R e. Ring ) /\ ( ( _I |` B ) e. ( R GrpHom R ) /\ ( _I |` B ) e. ( ( mulGrp ` R ) MndHom ( mulGrp ` R ) ) ) ) ) |
13 |
2 2 11 12
|
syl21anbrc |
|- ( R e. Ring -> ( _I |` B ) e. ( R RingHom R ) ) |