Metamath Proof Explorer


Theorem idrval

Description: The value of the identity element. (Contributed by FL, 12-Dec-2009) (Revised by Mario Carneiro, 22-Dec-2013) (New usage is discouraged.)

Ref Expression
Hypotheses idrval.1
|- X = ran G
idrval.2
|- U = ( GId ` G )
Assertion idrval
|- ( G e. A -> U = ( iota_ u e. X A. x e. X ( ( u G x ) = x /\ ( x G u ) = x ) ) )

Proof

Step Hyp Ref Expression
1 idrval.1
 |-  X = ran G
2 idrval.2
 |-  U = ( GId ` G )
3 1 gidval
 |-  ( G e. A -> ( GId ` G ) = ( iota_ u e. X A. x e. X ( ( u G x ) = x /\ ( x G u ) = x ) ) )
4 2 3 syl5eq
 |-  ( G e. A -> U = ( iota_ u e. X A. x e. X ( ( u G x ) = x /\ ( x G u ) = x ) ) )