| Step | Hyp | Ref | Expression | 
						
							| 1 |  | idsrngd.k |  |-  B = ( Base ` R ) | 
						
							| 2 |  | idsrngd.c |  |-  .* = ( *r ` R ) | 
						
							| 3 |  | idsrngd.r |  |-  ( ph -> R e. CRing ) | 
						
							| 4 |  | idsrngd.i |  |-  ( ( ph /\ x e. B ) -> ( .* ` x ) = x ) | 
						
							| 5 | 1 | a1i |  |-  ( ph -> B = ( Base ` R ) ) | 
						
							| 6 |  | eqidd |  |-  ( ph -> ( +g ` R ) = ( +g ` R ) ) | 
						
							| 7 |  | eqidd |  |-  ( ph -> ( .r ` R ) = ( .r ` R ) ) | 
						
							| 8 | 2 | a1i |  |-  ( ph -> .* = ( *r ` R ) ) | 
						
							| 9 |  | crngring |  |-  ( R e. CRing -> R e. Ring ) | 
						
							| 10 | 3 9 | syl |  |-  ( ph -> R e. Ring ) | 
						
							| 11 | 4 | ralrimiva |  |-  ( ph -> A. x e. B ( .* ` x ) = x ) | 
						
							| 12 | 11 | adantr |  |-  ( ( ph /\ a e. B ) -> A. x e. B ( .* ` x ) = x ) | 
						
							| 13 |  | simpr |  |-  ( ( ph /\ a e. B ) -> a e. B ) | 
						
							| 14 |  | simpr |  |-  ( ( ( ph /\ a e. B ) /\ x = a ) -> x = a ) | 
						
							| 15 | 14 | fveq2d |  |-  ( ( ( ph /\ a e. B ) /\ x = a ) -> ( .* ` x ) = ( .* ` a ) ) | 
						
							| 16 | 15 14 | eqeq12d |  |-  ( ( ( ph /\ a e. B ) /\ x = a ) -> ( ( .* ` x ) = x <-> ( .* ` a ) = a ) ) | 
						
							| 17 | 13 16 | rspcdv |  |-  ( ( ph /\ a e. B ) -> ( A. x e. B ( .* ` x ) = x -> ( .* ` a ) = a ) ) | 
						
							| 18 | 12 17 | mpd |  |-  ( ( ph /\ a e. B ) -> ( .* ` a ) = a ) | 
						
							| 19 | 18 13 | eqeltrd |  |-  ( ( ph /\ a e. B ) -> ( .* ` a ) e. B ) | 
						
							| 20 | 11 | adantr |  |-  ( ( ph /\ b e. B ) -> A. x e. B ( .* ` x ) = x ) | 
						
							| 21 | 20 | 3adant2 |  |-  ( ( ph /\ a e. B /\ b e. B ) -> A. x e. B ( .* ` x ) = x ) | 
						
							| 22 |  | ringgrp |  |-  ( R e. Ring -> R e. Grp ) | 
						
							| 23 | 10 22 | syl |  |-  ( ph -> R e. Grp ) | 
						
							| 24 |  | eqid |  |-  ( +g ` R ) = ( +g ` R ) | 
						
							| 25 | 1 24 | grpcl |  |-  ( ( R e. Grp /\ a e. B /\ b e. B ) -> ( a ( +g ` R ) b ) e. B ) | 
						
							| 26 | 23 25 | syl3an1 |  |-  ( ( ph /\ a e. B /\ b e. B ) -> ( a ( +g ` R ) b ) e. B ) | 
						
							| 27 |  | simpr |  |-  ( ( ( ph /\ a e. B /\ b e. B ) /\ x = ( a ( +g ` R ) b ) ) -> x = ( a ( +g ` R ) b ) ) | 
						
							| 28 | 27 | fveq2d |  |-  ( ( ( ph /\ a e. B /\ b e. B ) /\ x = ( a ( +g ` R ) b ) ) -> ( .* ` x ) = ( .* ` ( a ( +g ` R ) b ) ) ) | 
						
							| 29 | 28 27 | eqeq12d |  |-  ( ( ( ph /\ a e. B /\ b e. B ) /\ x = ( a ( +g ` R ) b ) ) -> ( ( .* ` x ) = x <-> ( .* ` ( a ( +g ` R ) b ) ) = ( a ( +g ` R ) b ) ) ) | 
						
							| 30 | 26 29 | rspcdv |  |-  ( ( ph /\ a e. B /\ b e. B ) -> ( A. x e. B ( .* ` x ) = x -> ( .* ` ( a ( +g ` R ) b ) ) = ( a ( +g ` R ) b ) ) ) | 
						
							| 31 | 21 30 | mpd |  |-  ( ( ph /\ a e. B /\ b e. B ) -> ( .* ` ( a ( +g ` R ) b ) ) = ( a ( +g ` R ) b ) ) | 
						
							| 32 | 18 | 3adant3 |  |-  ( ( ph /\ a e. B /\ b e. B ) -> ( .* ` a ) = a ) | 
						
							| 33 |  | simpr |  |-  ( ( ph /\ b e. B ) -> b e. B ) | 
						
							| 34 |  | simpr |  |-  ( ( ( ph /\ b e. B ) /\ x = b ) -> x = b ) | 
						
							| 35 | 34 | fveq2d |  |-  ( ( ( ph /\ b e. B ) /\ x = b ) -> ( .* ` x ) = ( .* ` b ) ) | 
						
							| 36 | 35 34 | eqeq12d |  |-  ( ( ( ph /\ b e. B ) /\ x = b ) -> ( ( .* ` x ) = x <-> ( .* ` b ) = b ) ) | 
						
							| 37 | 33 36 | rspcdv |  |-  ( ( ph /\ b e. B ) -> ( A. x e. B ( .* ` x ) = x -> ( .* ` b ) = b ) ) | 
						
							| 38 | 20 37 | mpd |  |-  ( ( ph /\ b e. B ) -> ( .* ` b ) = b ) | 
						
							| 39 | 38 | 3adant2 |  |-  ( ( ph /\ a e. B /\ b e. B ) -> ( .* ` b ) = b ) | 
						
							| 40 | 32 39 | oveq12d |  |-  ( ( ph /\ a e. B /\ b e. B ) -> ( ( .* ` a ) ( +g ` R ) ( .* ` b ) ) = ( a ( +g ` R ) b ) ) | 
						
							| 41 | 31 40 | eqtr4d |  |-  ( ( ph /\ a e. B /\ b e. B ) -> ( .* ` ( a ( +g ` R ) b ) ) = ( ( .* ` a ) ( +g ` R ) ( .* ` b ) ) ) | 
						
							| 42 |  | eqid |  |-  ( .r ` R ) = ( .r ` R ) | 
						
							| 43 | 1 42 | crngcom |  |-  ( ( R e. CRing /\ a e. B /\ b e. B ) -> ( a ( .r ` R ) b ) = ( b ( .r ` R ) a ) ) | 
						
							| 44 | 3 43 | syl3an1 |  |-  ( ( ph /\ a e. B /\ b e. B ) -> ( a ( .r ` R ) b ) = ( b ( .r ` R ) a ) ) | 
						
							| 45 | 1 42 | ringcl |  |-  ( ( R e. Ring /\ a e. B /\ b e. B ) -> ( a ( .r ` R ) b ) e. B ) | 
						
							| 46 | 10 45 | syl3an1 |  |-  ( ( ph /\ a e. B /\ b e. B ) -> ( a ( .r ` R ) b ) e. B ) | 
						
							| 47 |  | simpr |  |-  ( ( ( ph /\ a e. B /\ b e. B ) /\ x = ( a ( .r ` R ) b ) ) -> x = ( a ( .r ` R ) b ) ) | 
						
							| 48 | 47 | fveq2d |  |-  ( ( ( ph /\ a e. B /\ b e. B ) /\ x = ( a ( .r ` R ) b ) ) -> ( .* ` x ) = ( .* ` ( a ( .r ` R ) b ) ) ) | 
						
							| 49 | 48 47 | eqeq12d |  |-  ( ( ( ph /\ a e. B /\ b e. B ) /\ x = ( a ( .r ` R ) b ) ) -> ( ( .* ` x ) = x <-> ( .* ` ( a ( .r ` R ) b ) ) = ( a ( .r ` R ) b ) ) ) | 
						
							| 50 | 46 49 | rspcdv |  |-  ( ( ph /\ a e. B /\ b e. B ) -> ( A. x e. B ( .* ` x ) = x -> ( .* ` ( a ( .r ` R ) b ) ) = ( a ( .r ` R ) b ) ) ) | 
						
							| 51 | 21 50 | mpd |  |-  ( ( ph /\ a e. B /\ b e. B ) -> ( .* ` ( a ( .r ` R ) b ) ) = ( a ( .r ` R ) b ) ) | 
						
							| 52 | 39 32 | oveq12d |  |-  ( ( ph /\ a e. B /\ b e. B ) -> ( ( .* ` b ) ( .r ` R ) ( .* ` a ) ) = ( b ( .r ` R ) a ) ) | 
						
							| 53 | 44 51 52 | 3eqtr4d |  |-  ( ( ph /\ a e. B /\ b e. B ) -> ( .* ` ( a ( .r ` R ) b ) ) = ( ( .* ` b ) ( .r ` R ) ( .* ` a ) ) ) | 
						
							| 54 | 18 | fveq2d |  |-  ( ( ph /\ a e. B ) -> ( .* ` ( .* ` a ) ) = ( .* ` a ) ) | 
						
							| 55 | 54 18 | eqtrd |  |-  ( ( ph /\ a e. B ) -> ( .* ` ( .* ` a ) ) = a ) | 
						
							| 56 | 5 6 7 8 10 19 41 53 55 | issrngd |  |-  ( ph -> R e. *Ring ) |