Description: Equality implies equinumerosity. (Contributed by NM, 30-Apr-1998) (Revised by Mario Carneiro, 15-Nov-2014)
Ref | Expression | ||
---|---|---|---|
Assertion | idssen | |- _I C_ ~~ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reli | |- Rel _I |
|
2 | vex | |- y e. _V |
|
3 | 2 | ideq | |- ( x _I y <-> x = y ) |
4 | eqeng | |- ( x e. _V -> ( x = y -> x ~~ y ) ) |
|
5 | 4 | elv | |- ( x = y -> x ~~ y ) |
6 | 3 5 | sylbi | |- ( x _I y -> x ~~ y ) |
7 | df-br | |- ( x _I y <-> <. x , y >. e. _I ) |
|
8 | df-br | |- ( x ~~ y <-> <. x , y >. e. ~~ ) |
|
9 | 6 7 8 | 3imtr3i | |- ( <. x , y >. e. _I -> <. x , y >. e. ~~ ) |
10 | 1 9 | relssi | |- _I C_ ~~ |