Metamath Proof Explorer


Theorem iedgedg

Description: An indexed edge is an edge. (Contributed by AV, 19-Dec-2021)

Ref Expression
Hypothesis iedgedg.e
|- E = ( iEdg ` G )
Assertion iedgedg
|- ( ( Fun E /\ I e. dom E ) -> ( E ` I ) e. ( Edg ` G ) )

Proof

Step Hyp Ref Expression
1 iedgedg.e
 |-  E = ( iEdg ` G )
2 fvelrn
 |-  ( ( Fun E /\ I e. dom E ) -> ( E ` I ) e. ran E )
3 edgval
 |-  ( Edg ` G ) = ran ( iEdg ` G )
4 1 rneqi
 |-  ran E = ran ( iEdg ` G )
5 3 4 eqtr4i
 |-  ( Edg ` G ) = ran E
6 2 5 eleqtrrdi
 |-  ( ( Fun E /\ I e. dom E ) -> ( E ` I ) e. ( Edg ` G ) )