Description: An indexed edge is an edge. (Contributed by AV, 19-Dec-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | iedgedg.e | |- E = ( iEdg ` G ) |
|
| Assertion | iedgedg | |- ( ( Fun E /\ I e. dom E ) -> ( E ` I ) e. ( Edg ` G ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iedgedg.e | |- E = ( iEdg ` G ) |
|
| 2 | fvelrn | |- ( ( Fun E /\ I e. dom E ) -> ( E ` I ) e. ran E ) |
|
| 3 | edgval | |- ( Edg ` G ) = ran ( iEdg ` G ) |
|
| 4 | 1 | rneqi | |- ran E = ran ( iEdg ` G ) |
| 5 | 3 4 | eqtr4i | |- ( Edg ` G ) = ran E |
| 6 | 2 5 | eleqtrrdi | |- ( ( Fun E /\ I e. dom E ) -> ( E ` I ) e. ( Edg ` G ) ) |