| Step | Hyp | Ref | Expression | 
						
							| 1 |  | iedginwlk.i |  |-  I = ( iEdg ` G ) | 
						
							| 2 |  | simp1 |  |-  ( ( Fun I /\ F ( Walks ` G ) P /\ X e. ( 0 ..^ ( # ` F ) ) ) -> Fun I ) | 
						
							| 3 | 1 | wlkf |  |-  ( F ( Walks ` G ) P -> F e. Word dom I ) | 
						
							| 4 | 3 | 3ad2ant2 |  |-  ( ( Fun I /\ F ( Walks ` G ) P /\ X e. ( 0 ..^ ( # ` F ) ) ) -> F e. Word dom I ) | 
						
							| 5 |  | simp3 |  |-  ( ( Fun I /\ F ( Walks ` G ) P /\ X e. ( 0 ..^ ( # ` F ) ) ) -> X e. ( 0 ..^ ( # ` F ) ) ) | 
						
							| 6 |  | wrdsymbcl |  |-  ( ( F e. Word dom I /\ X e. ( 0 ..^ ( # ` F ) ) ) -> ( F ` X ) e. dom I ) | 
						
							| 7 | 4 5 6 | syl2anc |  |-  ( ( Fun I /\ F ( Walks ` G ) P /\ X e. ( 0 ..^ ( # ` F ) ) ) -> ( F ` X ) e. dom I ) | 
						
							| 8 |  | fvelrn |  |-  ( ( Fun I /\ ( F ` X ) e. dom I ) -> ( I ` ( F ` X ) ) e. ran I ) | 
						
							| 9 | 2 7 8 | syl2anc |  |-  ( ( Fun I /\ F ( Walks ` G ) P /\ X e. ( 0 ..^ ( # ` F ) ) ) -> ( I ` ( F ` X ) ) e. ran I ) |