| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eleq1 |
|- ( g = G -> ( g e. ( _V X. _V ) <-> G e. ( _V X. _V ) ) ) |
| 2 |
|
fveq2 |
|- ( g = G -> ( 2nd ` g ) = ( 2nd ` G ) ) |
| 3 |
|
fveq2 |
|- ( g = G -> ( .ef ` g ) = ( .ef ` G ) ) |
| 4 |
1 2 3
|
ifbieq12d |
|- ( g = G -> if ( g e. ( _V X. _V ) , ( 2nd ` g ) , ( .ef ` g ) ) = if ( G e. ( _V X. _V ) , ( 2nd ` G ) , ( .ef ` G ) ) ) |
| 5 |
|
df-iedg |
|- iEdg = ( g e. _V |-> if ( g e. ( _V X. _V ) , ( 2nd ` g ) , ( .ef ` g ) ) ) |
| 6 |
|
fvex |
|- ( 2nd ` G ) e. _V |
| 7 |
|
fvex |
|- ( .ef ` G ) e. _V |
| 8 |
6 7
|
ifex |
|- if ( G e. ( _V X. _V ) , ( 2nd ` G ) , ( .ef ` G ) ) e. _V |
| 9 |
4 5 8
|
fvmpt |
|- ( G e. _V -> ( iEdg ` G ) = if ( G e. ( _V X. _V ) , ( 2nd ` G ) , ( .ef ` G ) ) ) |
| 10 |
|
fvprc |
|- ( -. G e. _V -> ( .ef ` G ) = (/) ) |
| 11 |
|
prcnel |
|- ( -. G e. _V -> -. G e. ( _V X. _V ) ) |
| 12 |
11
|
iffalsed |
|- ( -. G e. _V -> if ( G e. ( _V X. _V ) , ( 2nd ` G ) , ( .ef ` G ) ) = ( .ef ` G ) ) |
| 13 |
|
fvprc |
|- ( -. G e. _V -> ( iEdg ` G ) = (/) ) |
| 14 |
10 12 13
|
3eqtr4rd |
|- ( -. G e. _V -> ( iEdg ` G ) = if ( G e. ( _V X. _V ) , ( 2nd ` G ) , ( .ef ` G ) ) ) |
| 15 |
9 14
|
pm2.61i |
|- ( iEdg ` G ) = if ( G e. ( _V X. _V ) , ( 2nd ` G ) , ( .ef ` G ) ) |