| Step | Hyp | Ref | Expression | 
						
							| 1 |  | zre |  |-  ( K e. ZZ -> K e. RR ) | 
						
							| 2 |  | 4re |  |-  4 e. RR | 
						
							| 3 |  | 4pos |  |-  0 < 4 | 
						
							| 4 | 2 3 | elrpii |  |-  4 e. RR+ | 
						
							| 5 |  | modval |  |-  ( ( K e. RR /\ 4 e. RR+ ) -> ( K mod 4 ) = ( K - ( 4 x. ( |_ ` ( K / 4 ) ) ) ) ) | 
						
							| 6 | 1 4 5 | sylancl |  |-  ( K e. ZZ -> ( K mod 4 ) = ( K - ( 4 x. ( |_ ` ( K / 4 ) ) ) ) ) | 
						
							| 7 | 6 | oveq2d |  |-  ( K e. ZZ -> ( _i ^ ( K mod 4 ) ) = ( _i ^ ( K - ( 4 x. ( |_ ` ( K / 4 ) ) ) ) ) ) | 
						
							| 8 |  | 4z |  |-  4 e. ZZ | 
						
							| 9 |  | 4nn |  |-  4 e. NN | 
						
							| 10 |  | nndivre |  |-  ( ( K e. RR /\ 4 e. NN ) -> ( K / 4 ) e. RR ) | 
						
							| 11 | 1 9 10 | sylancl |  |-  ( K e. ZZ -> ( K / 4 ) e. RR ) | 
						
							| 12 | 11 | flcld |  |-  ( K e. ZZ -> ( |_ ` ( K / 4 ) ) e. ZZ ) | 
						
							| 13 |  | zmulcl |  |-  ( ( 4 e. ZZ /\ ( |_ ` ( K / 4 ) ) e. ZZ ) -> ( 4 x. ( |_ ` ( K / 4 ) ) ) e. ZZ ) | 
						
							| 14 | 8 12 13 | sylancr |  |-  ( K e. ZZ -> ( 4 x. ( |_ ` ( K / 4 ) ) ) e. ZZ ) | 
						
							| 15 |  | ax-icn |  |-  _i e. CC | 
						
							| 16 |  | ine0 |  |-  _i =/= 0 | 
						
							| 17 |  | expsub |  |-  ( ( ( _i e. CC /\ _i =/= 0 ) /\ ( K e. ZZ /\ ( 4 x. ( |_ ` ( K / 4 ) ) ) e. ZZ ) ) -> ( _i ^ ( K - ( 4 x. ( |_ ` ( K / 4 ) ) ) ) ) = ( ( _i ^ K ) / ( _i ^ ( 4 x. ( |_ ` ( K / 4 ) ) ) ) ) ) | 
						
							| 18 | 15 16 17 | mpanl12 |  |-  ( ( K e. ZZ /\ ( 4 x. ( |_ ` ( K / 4 ) ) ) e. ZZ ) -> ( _i ^ ( K - ( 4 x. ( |_ ` ( K / 4 ) ) ) ) ) = ( ( _i ^ K ) / ( _i ^ ( 4 x. ( |_ ` ( K / 4 ) ) ) ) ) ) | 
						
							| 19 | 14 18 | mpdan |  |-  ( K e. ZZ -> ( _i ^ ( K - ( 4 x. ( |_ ` ( K / 4 ) ) ) ) ) = ( ( _i ^ K ) / ( _i ^ ( 4 x. ( |_ ` ( K / 4 ) ) ) ) ) ) | 
						
							| 20 |  | expmulz |  |-  ( ( ( _i e. CC /\ _i =/= 0 ) /\ ( 4 e. ZZ /\ ( |_ ` ( K / 4 ) ) e. ZZ ) ) -> ( _i ^ ( 4 x. ( |_ ` ( K / 4 ) ) ) ) = ( ( _i ^ 4 ) ^ ( |_ ` ( K / 4 ) ) ) ) | 
						
							| 21 | 15 16 20 | mpanl12 |  |-  ( ( 4 e. ZZ /\ ( |_ ` ( K / 4 ) ) e. ZZ ) -> ( _i ^ ( 4 x. ( |_ ` ( K / 4 ) ) ) ) = ( ( _i ^ 4 ) ^ ( |_ ` ( K / 4 ) ) ) ) | 
						
							| 22 | 8 12 21 | sylancr |  |-  ( K e. ZZ -> ( _i ^ ( 4 x. ( |_ ` ( K / 4 ) ) ) ) = ( ( _i ^ 4 ) ^ ( |_ ` ( K / 4 ) ) ) ) | 
						
							| 23 |  | i4 |  |-  ( _i ^ 4 ) = 1 | 
						
							| 24 | 23 | oveq1i |  |-  ( ( _i ^ 4 ) ^ ( |_ ` ( K / 4 ) ) ) = ( 1 ^ ( |_ ` ( K / 4 ) ) ) | 
						
							| 25 |  | 1exp |  |-  ( ( |_ ` ( K / 4 ) ) e. ZZ -> ( 1 ^ ( |_ ` ( K / 4 ) ) ) = 1 ) | 
						
							| 26 | 12 25 | syl |  |-  ( K e. ZZ -> ( 1 ^ ( |_ ` ( K / 4 ) ) ) = 1 ) | 
						
							| 27 | 24 26 | eqtrid |  |-  ( K e. ZZ -> ( ( _i ^ 4 ) ^ ( |_ ` ( K / 4 ) ) ) = 1 ) | 
						
							| 28 | 22 27 | eqtrd |  |-  ( K e. ZZ -> ( _i ^ ( 4 x. ( |_ ` ( K / 4 ) ) ) ) = 1 ) | 
						
							| 29 | 28 | oveq2d |  |-  ( K e. ZZ -> ( ( _i ^ K ) / ( _i ^ ( 4 x. ( |_ ` ( K / 4 ) ) ) ) ) = ( ( _i ^ K ) / 1 ) ) | 
						
							| 30 |  | expclz |  |-  ( ( _i e. CC /\ _i =/= 0 /\ K e. ZZ ) -> ( _i ^ K ) e. CC ) | 
						
							| 31 | 15 16 30 | mp3an12 |  |-  ( K e. ZZ -> ( _i ^ K ) e. CC ) | 
						
							| 32 | 31 | div1d |  |-  ( K e. ZZ -> ( ( _i ^ K ) / 1 ) = ( _i ^ K ) ) | 
						
							| 33 | 29 32 | eqtrd |  |-  ( K e. ZZ -> ( ( _i ^ K ) / ( _i ^ ( 4 x. ( |_ ` ( K / 4 ) ) ) ) ) = ( _i ^ K ) ) | 
						
							| 34 | 19 33 | eqtrd |  |-  ( K e. ZZ -> ( _i ^ ( K - ( 4 x. ( |_ ` ( K / 4 ) ) ) ) ) = ( _i ^ K ) ) | 
						
							| 35 | 7 34 | eqtrd |  |-  ( K e. ZZ -> ( _i ^ ( K mod 4 ) ) = ( _i ^ K ) ) |