Step |
Hyp |
Ref |
Expression |
1 |
|
iftrue |
|- ( ph -> if ( ph , if ( ps , A , B ) , B ) = if ( ps , A , B ) ) |
2 |
|
ibar |
|- ( ph -> ( ps <-> ( ph /\ ps ) ) ) |
3 |
2
|
ifbid |
|- ( ph -> if ( ps , A , B ) = if ( ( ph /\ ps ) , A , B ) ) |
4 |
1 3
|
eqtr2d |
|- ( ph -> if ( ( ph /\ ps ) , A , B ) = if ( ph , if ( ps , A , B ) , B ) ) |
5 |
|
simpl |
|- ( ( ph /\ ps ) -> ph ) |
6 |
5
|
con3i |
|- ( -. ph -> -. ( ph /\ ps ) ) |
7 |
6
|
iffalsed |
|- ( -. ph -> if ( ( ph /\ ps ) , A , B ) = B ) |
8 |
|
iffalse |
|- ( -. ph -> if ( ph , if ( ps , A , B ) , B ) = B ) |
9 |
7 8
|
eqtr4d |
|- ( -. ph -> if ( ( ph /\ ps ) , A , B ) = if ( ph , if ( ps , A , B ) , B ) ) |
10 |
4 9
|
pm2.61i |
|- if ( ( ph /\ ps ) , A , B ) = if ( ph , if ( ps , A , B ) , B ) |