| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							iftrue | 
							 |-  ( ph -> if ( ph , if ( ps , A , B ) , B ) = if ( ps , A , B ) )  | 
						
						
							| 2 | 
							
								
							 | 
							ibar | 
							 |-  ( ph -> ( ps <-> ( ph /\ ps ) ) )  | 
						
						
							| 3 | 
							
								2
							 | 
							ifbid | 
							 |-  ( ph -> if ( ps , A , B ) = if ( ( ph /\ ps ) , A , B ) )  | 
						
						
							| 4 | 
							
								1 3
							 | 
							eqtr2d | 
							 |-  ( ph -> if ( ( ph /\ ps ) , A , B ) = if ( ph , if ( ps , A , B ) , B ) )  | 
						
						
							| 5 | 
							
								
							 | 
							simpl | 
							 |-  ( ( ph /\ ps ) -> ph )  | 
						
						
							| 6 | 
							
								5
							 | 
							con3i | 
							 |-  ( -. ph -> -. ( ph /\ ps ) )  | 
						
						
							| 7 | 
							
								6
							 | 
							iffalsed | 
							 |-  ( -. ph -> if ( ( ph /\ ps ) , A , B ) = B )  | 
						
						
							| 8 | 
							
								
							 | 
							iffalse | 
							 |-  ( -. ph -> if ( ph , if ( ps , A , B ) , B ) = B )  | 
						
						
							| 9 | 
							
								7 8
							 | 
							eqtr4d | 
							 |-  ( -. ph -> if ( ( ph /\ ps ) , A , B ) = if ( ph , if ( ps , A , B ) , B ) )  | 
						
						
							| 10 | 
							
								4 9
							 | 
							pm2.61i | 
							 |-  if ( ( ph /\ ps ) , A , B ) = if ( ph , if ( ps , A , B ) , B )  |