| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dfbi3 |
|- ( ( ph <-> ps ) <-> ( ( ph /\ ps ) \/ ( -. ph /\ -. ps ) ) ) |
| 2 |
|
iftrue |
|- ( ph -> if ( ph , A , B ) = A ) |
| 3 |
|
iftrue |
|- ( ps -> if ( ps , A , B ) = A ) |
| 4 |
3
|
eqcomd |
|- ( ps -> A = if ( ps , A , B ) ) |
| 5 |
2 4
|
sylan9eq |
|- ( ( ph /\ ps ) -> if ( ph , A , B ) = if ( ps , A , B ) ) |
| 6 |
|
iffalse |
|- ( -. ph -> if ( ph , A , B ) = B ) |
| 7 |
|
iffalse |
|- ( -. ps -> if ( ps , A , B ) = B ) |
| 8 |
7
|
eqcomd |
|- ( -. ps -> B = if ( ps , A , B ) ) |
| 9 |
6 8
|
sylan9eq |
|- ( ( -. ph /\ -. ps ) -> if ( ph , A , B ) = if ( ps , A , B ) ) |
| 10 |
5 9
|
jaoi |
|- ( ( ( ph /\ ps ) \/ ( -. ph /\ -. ps ) ) -> if ( ph , A , B ) = if ( ps , A , B ) ) |
| 11 |
1 10
|
sylbi |
|- ( ( ph <-> ps ) -> if ( ph , A , B ) = if ( ps , A , B ) ) |