Metamath Proof Explorer


Theorem ifbid

Description: Equivalence deduction for conditional operators. (Contributed by NM, 18-Apr-2005)

Ref Expression
Hypothesis ifbid.1
|- ( ph -> ( ps <-> ch ) )
Assertion ifbid
|- ( ph -> if ( ps , A , B ) = if ( ch , A , B ) )

Proof

Step Hyp Ref Expression
1 ifbid.1
 |-  ( ph -> ( ps <-> ch ) )
2 ifbi
 |-  ( ( ps <-> ch ) -> if ( ps , A , B ) = if ( ch , A , B ) )
3 1 2 syl
 |-  ( ph -> if ( ps , A , B ) = if ( ch , A , B ) )