Metamath Proof Explorer


Theorem ifbieq12d2

Description: Equivalence deduction for conditional operators. (Contributed by Thierry Arnoux, 14-Feb-2017) (Proof shortened by Wolf Lammen, 24-Jun-2021)

Ref Expression
Hypotheses ifbieq12d2.1
|- ( ph -> ( ps <-> ch ) )
ifbieq12d2.2
|- ( ( ph /\ ps ) -> A = C )
ifbieq12d2.3
|- ( ( ph /\ -. ps ) -> B = D )
Assertion ifbieq12d2
|- ( ph -> if ( ps , A , B ) = if ( ch , C , D ) )

Proof

Step Hyp Ref Expression
1 ifbieq12d2.1
 |-  ( ph -> ( ps <-> ch ) )
2 ifbieq12d2.2
 |-  ( ( ph /\ ps ) -> A = C )
3 ifbieq12d2.3
 |-  ( ( ph /\ -. ps ) -> B = D )
4 2 3 ifeq12da
 |-  ( ph -> if ( ps , A , B ) = if ( ps , C , D ) )
5 1 ifbid
 |-  ( ph -> if ( ps , C , D ) = if ( ch , C , D ) )
6 4 5 eqtrd
 |-  ( ph -> if ( ps , A , B ) = if ( ch , C , D ) )