Description: Equivalence deduction for conditional operators. (Contributed by Thierry Arnoux, 14-Feb-2017) (Proof shortened by Wolf Lammen, 24-Jun-2021)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ifbieq12d2.1 | |- ( ph -> ( ps <-> ch ) ) |
|
ifbieq12d2.2 | |- ( ( ph /\ ps ) -> A = C ) |
||
ifbieq12d2.3 | |- ( ( ph /\ -. ps ) -> B = D ) |
||
Assertion | ifbieq12d2 | |- ( ph -> if ( ps , A , B ) = if ( ch , C , D ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ifbieq12d2.1 | |- ( ph -> ( ps <-> ch ) ) |
|
2 | ifbieq12d2.2 | |- ( ( ph /\ ps ) -> A = C ) |
|
3 | ifbieq12d2.3 | |- ( ( ph /\ -. ps ) -> B = D ) |
|
4 | 2 3 | ifeq12da | |- ( ph -> if ( ps , A , B ) = if ( ps , C , D ) ) |
5 | 1 | ifbid | |- ( ph -> if ( ps , C , D ) = if ( ch , C , D ) ) |
6 | 4 5 | eqtrd | |- ( ph -> if ( ps , A , B ) = if ( ch , C , D ) ) |