Metamath Proof Explorer


Theorem ifbieq12i

Description: Equivalence deduction for conditional operators. (Contributed by NM, 18-Mar-2013)

Ref Expression
Hypotheses ifbieq12i.1
|- ( ph <-> ps )
ifbieq12i.2
|- A = C
ifbieq12i.3
|- B = D
Assertion ifbieq12i
|- if ( ph , A , B ) = if ( ps , C , D )

Proof

Step Hyp Ref Expression
1 ifbieq12i.1
 |-  ( ph <-> ps )
2 ifbieq12i.2
 |-  A = C
3 ifbieq12i.3
 |-  B = D
4 ifeq1
 |-  ( A = C -> if ( ph , A , B ) = if ( ph , C , B ) )
5 2 4 ax-mp
 |-  if ( ph , A , B ) = if ( ph , C , B )
6 1 3 ifbieq2i
 |-  if ( ph , C , B ) = if ( ps , C , D )
7 5 6 eqtri
 |-  if ( ph , A , B ) = if ( ps , C , D )