Description: Equivalence/equality deduction for conditional operators. (Contributed by JJ, 25-Sep-2018)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ifbieq1d.1 | |- ( ph -> ( ps <-> ch ) ) |
|
ifbieq1d.2 | |- ( ph -> A = B ) |
||
Assertion | ifbieq1d | |- ( ph -> if ( ps , A , C ) = if ( ch , B , C ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ifbieq1d.1 | |- ( ph -> ( ps <-> ch ) ) |
|
2 | ifbieq1d.2 | |- ( ph -> A = B ) |
|
3 | 1 | ifbid | |- ( ph -> if ( ps , A , C ) = if ( ch , A , C ) ) |
4 | 2 | ifeq1d | |- ( ph -> if ( ch , A , C ) = if ( ch , B , C ) ) |
5 | 3 4 | eqtrd | |- ( ph -> if ( ps , A , C ) = if ( ch , B , C ) ) |