Metamath Proof Explorer


Theorem ifbieq2d

Description: Equivalence/equality deduction for conditional operators. (Contributed by Paul Chapman, 22-Jun-2011)

Ref Expression
Hypotheses ifbieq2d.1
|- ( ph -> ( ps <-> ch ) )
ifbieq2d.2
|- ( ph -> A = B )
Assertion ifbieq2d
|- ( ph -> if ( ps , C , A ) = if ( ch , C , B ) )

Proof

Step Hyp Ref Expression
1 ifbieq2d.1
 |-  ( ph -> ( ps <-> ch ) )
2 ifbieq2d.2
 |-  ( ph -> A = B )
3 1 ifbid
 |-  ( ph -> if ( ps , C , A ) = if ( ch , C , A ) )
4 2 ifeq2d
 |-  ( ph -> if ( ch , C , A ) = if ( ch , C , B ) )
5 3 4 eqtrd
 |-  ( ph -> if ( ps , C , A ) = if ( ch , C , B ) )