Description: Equivalence/equality deduction for conditional operators. (Contributed by Paul Chapman, 22-Jun-2011)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ifbieq2d.1 | |- ( ph -> ( ps <-> ch ) ) |
|
ifbieq2d.2 | |- ( ph -> A = B ) |
||
Assertion | ifbieq2d | |- ( ph -> if ( ps , C , A ) = if ( ch , C , B ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ifbieq2d.1 | |- ( ph -> ( ps <-> ch ) ) |
|
2 | ifbieq2d.2 | |- ( ph -> A = B ) |
|
3 | 1 | ifbid | |- ( ph -> if ( ps , C , A ) = if ( ch , C , A ) ) |
4 | 2 | ifeq2d | |- ( ph -> if ( ch , C , A ) = if ( ch , C , B ) ) |
5 | 3 4 | eqtrd | |- ( ph -> if ( ps , C , A ) = if ( ch , C , B ) ) |