Description: Equivalence/equality deduction for conditional operators. (Contributed by Paul Chapman, 22-Jun-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ifbieq2d.1 | |- ( ph -> ( ps <-> ch ) ) |
|
| ifbieq2d.2 | |- ( ph -> A = B ) |
||
| Assertion | ifbieq2d | |- ( ph -> if ( ps , C , A ) = if ( ch , C , B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ifbieq2d.1 | |- ( ph -> ( ps <-> ch ) ) |
|
| 2 | ifbieq2d.2 | |- ( ph -> A = B ) |
|
| 3 | 1 | ifbid | |- ( ph -> if ( ps , C , A ) = if ( ch , C , A ) ) |
| 4 | 2 | ifeq2d | |- ( ph -> if ( ch , C , A ) = if ( ch , C , B ) ) |
| 5 | 3 4 | eqtrd | |- ( ph -> if ( ps , C , A ) = if ( ch , C , B ) ) |