Metamath Proof Explorer


Theorem ifbieq2i

Description: Equivalence/equality inference for conditional operators. (Contributed by Paul Chapman, 22-Jun-2011)

Ref Expression
Hypotheses ifbieq2i.1
|- ( ph <-> ps )
ifbieq2i.2
|- A = B
Assertion ifbieq2i
|- if ( ph , C , A ) = if ( ps , C , B )

Proof

Step Hyp Ref Expression
1 ifbieq2i.1
 |-  ( ph <-> ps )
2 ifbieq2i.2
 |-  A = B
3 ifbi
 |-  ( ( ph <-> ps ) -> if ( ph , C , A ) = if ( ps , C , A ) )
4 1 3 ax-mp
 |-  if ( ph , C , A ) = if ( ps , C , A )
5 ifeq2
 |-  ( A = B -> if ( ps , C , A ) = if ( ps , C , B ) )
6 2 5 ax-mp
 |-  if ( ps , C , A ) = if ( ps , C , B )
7 4 6 eqtri
 |-  if ( ph , C , A ) = if ( ps , C , B )