Description: Equivalence/equality inference for conditional operators. (Contributed by Paul Chapman, 22-Jun-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ifbieq2i.1 | |- ( ph <-> ps ) |
|
| ifbieq2i.2 | |- A = B |
||
| Assertion | ifbieq2i | |- if ( ph , C , A ) = if ( ps , C , B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ifbieq2i.1 | |- ( ph <-> ps ) |
|
| 2 | ifbieq2i.2 | |- A = B |
|
| 3 | ifbi | |- ( ( ph <-> ps ) -> if ( ph , C , A ) = if ( ps , C , A ) ) |
|
| 4 | 1 3 | ax-mp | |- if ( ph , C , A ) = if ( ps , C , A ) |
| 5 | ifeq2 | |- ( A = B -> if ( ps , C , A ) = if ( ps , C , B ) ) |
|
| 6 | 2 5 | ax-mp | |- if ( ps , C , A ) = if ( ps , C , B ) |
| 7 | 4 6 | eqtri | |- if ( ph , C , A ) = if ( ps , C , B ) |