Step |
Hyp |
Ref |
Expression |
1 |
|
ifboth.1 |
|- ( A = if ( ph , A , B ) -> ( ps <-> th ) ) |
2 |
|
ifboth.2 |
|- ( B = if ( ph , A , B ) -> ( ch <-> th ) ) |
3 |
|
ifbothda.3 |
|- ( ( et /\ ph ) -> ps ) |
4 |
|
ifbothda.4 |
|- ( ( et /\ -. ph ) -> ch ) |
5 |
|
iftrue |
|- ( ph -> if ( ph , A , B ) = A ) |
6 |
5
|
eqcomd |
|- ( ph -> A = if ( ph , A , B ) ) |
7 |
6 1
|
syl |
|- ( ph -> ( ps <-> th ) ) |
8 |
7
|
adantl |
|- ( ( et /\ ph ) -> ( ps <-> th ) ) |
9 |
3 8
|
mpbid |
|- ( ( et /\ ph ) -> th ) |
10 |
|
iffalse |
|- ( -. ph -> if ( ph , A , B ) = B ) |
11 |
10
|
eqcomd |
|- ( -. ph -> B = if ( ph , A , B ) ) |
12 |
11 2
|
syl |
|- ( -. ph -> ( ch <-> th ) ) |
13 |
12
|
adantl |
|- ( ( et /\ -. ph ) -> ( ch <-> th ) ) |
14 |
4 13
|
mpbid |
|- ( ( et /\ -. ph ) -> th ) |
15 |
9 14
|
pm2.61dan |
|- ( et -> th ) |