Description: Membership (closure) of a conditional operator. (Contributed by NM, 4-Apr-2005)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ifcl | |- ( ( A e. C /\ B e. C ) -> if ( ph , A , B ) e. C ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq1 | |- ( A = if ( ph , A , B ) -> ( A e. C <-> if ( ph , A , B ) e. C ) ) |
|
| 2 | eleq1 | |- ( B = if ( ph , A , B ) -> ( B e. C <-> if ( ph , A , B ) e. C ) ) |
|
| 3 | 1 2 | ifboth | |- ( ( A e. C /\ B e. C ) -> if ( ph , A , B ) e. C ) |