Metamath Proof Explorer


Theorem ifcld

Description: Membership (closure) of a conditional operator, deduction form. (Contributed by SO, 16-Jul-2018)

Ref Expression
Hypotheses ifcld.a
|- ( ph -> A e. C )
ifcld.b
|- ( ph -> B e. C )
Assertion ifcld
|- ( ph -> if ( ps , A , B ) e. C )

Proof

Step Hyp Ref Expression
1 ifcld.a
 |-  ( ph -> A e. C )
2 ifcld.b
 |-  ( ph -> B e. C )
3 ifcl
 |-  ( ( A e. C /\ B e. C ) -> if ( ps , A , B ) e. C )
4 1 2 3 syl2anc
 |-  ( ph -> if ( ps , A , B ) e. C )