Description: Conditional closure. (Contributed by Jeff Madsen, 2-Sep-2009)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ifclda.1 | |- ( ( ph /\ ps ) -> A e. C ) |
|
ifclda.2 | |- ( ( ph /\ -. ps ) -> B e. C ) |
||
Assertion | ifclda | |- ( ph -> if ( ps , A , B ) e. C ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ifclda.1 | |- ( ( ph /\ ps ) -> A e. C ) |
|
2 | ifclda.2 | |- ( ( ph /\ -. ps ) -> B e. C ) |
|
3 | iftrue | |- ( ps -> if ( ps , A , B ) = A ) |
|
4 | 3 | adantl | |- ( ( ph /\ ps ) -> if ( ps , A , B ) = A ) |
5 | 4 1 | eqeltrd | |- ( ( ph /\ ps ) -> if ( ps , A , B ) e. C ) |
6 | iffalse | |- ( -. ps -> if ( ps , A , B ) = B ) |
|
7 | 6 | adantl | |- ( ( ph /\ -. ps ) -> if ( ps , A , B ) = B ) |
8 | 7 2 | eqeltrd | |- ( ( ph /\ -. ps ) -> if ( ps , A , B ) e. C ) |
9 | 5 8 | pm2.61dan | |- ( ph -> if ( ps , A , B ) e. C ) |