| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pm3.13 |
|- ( -. ( ph /\ ps ) -> ( -. ph \/ -. ps ) ) |
| 2 |
|
iffalse |
|- ( -. ph -> if ( ph , A , if ( ps , B , C ) ) = if ( ps , B , C ) ) |
| 3 |
|
iffalse |
|- ( -. ph -> if ( ph , A , C ) = C ) |
| 4 |
3
|
ifeq2d |
|- ( -. ph -> if ( ps , B , if ( ph , A , C ) ) = if ( ps , B , C ) ) |
| 5 |
2 4
|
eqtr4d |
|- ( -. ph -> if ( ph , A , if ( ps , B , C ) ) = if ( ps , B , if ( ph , A , C ) ) ) |
| 6 |
|
iffalse |
|- ( -. ps -> if ( ps , B , C ) = C ) |
| 7 |
6
|
ifeq2d |
|- ( -. ps -> if ( ph , A , if ( ps , B , C ) ) = if ( ph , A , C ) ) |
| 8 |
|
iffalse |
|- ( -. ps -> if ( ps , B , if ( ph , A , C ) ) = if ( ph , A , C ) ) |
| 9 |
7 8
|
eqtr4d |
|- ( -. ps -> if ( ph , A , if ( ps , B , C ) ) = if ( ps , B , if ( ph , A , C ) ) ) |
| 10 |
5 9
|
jaoi |
|- ( ( -. ph \/ -. ps ) -> if ( ph , A , if ( ps , B , C ) ) = if ( ps , B , if ( ph , A , C ) ) ) |
| 11 |
1 10
|
syl |
|- ( -. ( ph /\ ps ) -> if ( ph , A , if ( ps , B , C ) ) = if ( ps , B , if ( ph , A , C ) ) ) |