Metamath Proof Explorer


Theorem ifel

Description: Membership of a conditional operator. (Contributed by NM, 10-Sep-2005)

Ref Expression
Assertion ifel
|- ( if ( ph , A , B ) e. C <-> ( ( ph /\ A e. C ) \/ ( -. ph /\ B e. C ) ) )

Proof

Step Hyp Ref Expression
1 eleq1
 |-  ( if ( ph , A , B ) = A -> ( if ( ph , A , B ) e. C <-> A e. C ) )
2 eleq1
 |-  ( if ( ph , A , B ) = B -> ( if ( ph , A , B ) e. C <-> B e. C ) )
3 1 2 elimif
 |-  ( if ( ph , A , B ) e. C <-> ( ( ph /\ A e. C ) \/ ( -. ph /\ B e. C ) ) )