Description: Equality theorem for conditional operator. (Contributed by NM, 1-Sep-2004) (Revised by Mario Carneiro, 8-Sep-2013)
Ref | Expression | ||
---|---|---|---|
Assertion | ifeq1 | |- ( A = B -> if ( ph , A , C ) = if ( ph , B , C ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rabeq | |- ( A = B -> { x e. A | ph } = { x e. B | ph } ) |
|
2 | 1 | uneq1d | |- ( A = B -> ( { x e. A | ph } u. { x e. C | -. ph } ) = ( { x e. B | ph } u. { x e. C | -. ph } ) ) |
3 | dfif6 | |- if ( ph , A , C ) = ( { x e. A | ph } u. { x e. C | -. ph } ) |
|
4 | dfif6 | |- if ( ph , B , C ) = ( { x e. B | ph } u. { x e. C | -. ph } ) |
|
5 | 2 3 4 | 3eqtr4g | |- ( A = B -> if ( ph , A , C ) = if ( ph , B , C ) ) |