Description: Equality theorem for conditional operators. (Contributed by NM, 1-Sep-2004)
Ref | Expression | ||
---|---|---|---|
Assertion | ifeq12 | |- ( ( A = B /\ C = D ) -> if ( ph , A , C ) = if ( ph , B , D ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ifeq1 | |- ( A = B -> if ( ph , A , C ) = if ( ph , B , C ) ) |
|
2 | ifeq2 | |- ( C = D -> if ( ph , B , C ) = if ( ph , B , D ) ) |
|
3 | 1 2 | sylan9eq | |- ( ( A = B /\ C = D ) -> if ( ph , A , C ) = if ( ph , B , D ) ) |