Metamath Proof Explorer


Theorem ifeq12d

Description: Equality deduction for conditional operator. (Contributed by NM, 24-Mar-2015)

Ref Expression
Hypotheses ifeq1d.1
|- ( ph -> A = B )
ifeq12d.2
|- ( ph -> C = D )
Assertion ifeq12d
|- ( ph -> if ( ps , A , C ) = if ( ps , B , D ) )

Proof

Step Hyp Ref Expression
1 ifeq1d.1
 |-  ( ph -> A = B )
2 ifeq12d.2
 |-  ( ph -> C = D )
3 1 ifeq1d
 |-  ( ph -> if ( ps , A , C ) = if ( ps , B , C ) )
4 2 ifeq2d
 |-  ( ph -> if ( ps , B , C ) = if ( ps , B , D ) )
5 3 4 eqtrd
 |-  ( ph -> if ( ps , A , C ) = if ( ps , B , D ) )