| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ifeq12da.1 |  |-  ( ( ph /\ ps ) -> A = C ) | 
						
							| 2 |  | ifeq12da.2 |  |-  ( ( ph /\ -. ps ) -> B = D ) | 
						
							| 3 | 1 | ifeq1da |  |-  ( ph -> if ( ps , A , B ) = if ( ps , C , B ) ) | 
						
							| 4 |  | iftrue |  |-  ( ps -> if ( ps , C , B ) = C ) | 
						
							| 5 |  | iftrue |  |-  ( ps -> if ( ps , C , D ) = C ) | 
						
							| 6 | 4 5 | eqtr4d |  |-  ( ps -> if ( ps , C , B ) = if ( ps , C , D ) ) | 
						
							| 7 | 3 6 | sylan9eq |  |-  ( ( ph /\ ps ) -> if ( ps , A , B ) = if ( ps , C , D ) ) | 
						
							| 8 | 2 | ifeq2da |  |-  ( ph -> if ( ps , A , B ) = if ( ps , A , D ) ) | 
						
							| 9 |  | iffalse |  |-  ( -. ps -> if ( ps , A , D ) = D ) | 
						
							| 10 |  | iffalse |  |-  ( -. ps -> if ( ps , C , D ) = D ) | 
						
							| 11 | 9 10 | eqtr4d |  |-  ( -. ps -> if ( ps , A , D ) = if ( ps , C , D ) ) | 
						
							| 12 | 8 11 | sylan9eq |  |-  ( ( ph /\ -. ps ) -> if ( ps , A , B ) = if ( ps , C , D ) ) | 
						
							| 13 | 7 12 | pm2.61dan |  |-  ( ph -> if ( ps , A , B ) = if ( ps , C , D ) ) |