Step |
Hyp |
Ref |
Expression |
1 |
|
ifeq12da.1 |
|- ( ( ph /\ ps ) -> A = C ) |
2 |
|
ifeq12da.2 |
|- ( ( ph /\ -. ps ) -> B = D ) |
3 |
1
|
ifeq1da |
|- ( ph -> if ( ps , A , B ) = if ( ps , C , B ) ) |
4 |
|
iftrue |
|- ( ps -> if ( ps , C , B ) = C ) |
5 |
|
iftrue |
|- ( ps -> if ( ps , C , D ) = C ) |
6 |
4 5
|
eqtr4d |
|- ( ps -> if ( ps , C , B ) = if ( ps , C , D ) ) |
7 |
3 6
|
sylan9eq |
|- ( ( ph /\ ps ) -> if ( ps , A , B ) = if ( ps , C , D ) ) |
8 |
2
|
ifeq2da |
|- ( ph -> if ( ps , A , B ) = if ( ps , A , D ) ) |
9 |
|
iffalse |
|- ( -. ps -> if ( ps , A , D ) = D ) |
10 |
|
iffalse |
|- ( -. ps -> if ( ps , C , D ) = D ) |
11 |
9 10
|
eqtr4d |
|- ( -. ps -> if ( ps , A , D ) = if ( ps , C , D ) ) |
12 |
8 11
|
sylan9eq |
|- ( ( ph /\ -. ps ) -> if ( ps , A , B ) = if ( ps , C , D ) ) |
13 |
7 12
|
pm2.61dan |
|- ( ph -> if ( ps , A , B ) = if ( ps , C , D ) ) |