Metamath Proof Explorer


Theorem ifeq1d

Description: Equality deduction for conditional operator. (Contributed by NM, 16-Feb-2005)

Ref Expression
Hypothesis ifeq1d.1
|- ( ph -> A = B )
Assertion ifeq1d
|- ( ph -> if ( ps , A , C ) = if ( ps , B , C ) )

Proof

Step Hyp Ref Expression
1 ifeq1d.1
 |-  ( ph -> A = B )
2 ifeq1
 |-  ( A = B -> if ( ps , A , C ) = if ( ps , B , C ) )
3 1 2 syl
 |-  ( ph -> if ( ps , A , C ) = if ( ps , B , C ) )