Description: Conditional equality. (Contributed by Jeff Madsen, 2-Sep-2009)
Ref | Expression | ||
---|---|---|---|
Hypothesis | ifeq1da.1 | |- ( ( ph /\ ps ) -> A = B ) |
|
Assertion | ifeq1da | |- ( ph -> if ( ps , A , C ) = if ( ps , B , C ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ifeq1da.1 | |- ( ( ph /\ ps ) -> A = B ) |
|
2 | 1 | ifeq1d | |- ( ( ph /\ ps ) -> if ( ps , A , C ) = if ( ps , B , C ) ) |
3 | iffalse | |- ( -. ps -> if ( ps , A , C ) = C ) |
|
4 | iffalse | |- ( -. ps -> if ( ps , B , C ) = C ) |
|
5 | 3 4 | eqtr4d | |- ( -. ps -> if ( ps , A , C ) = if ( ps , B , C ) ) |
6 | 5 | adantl | |- ( ( ph /\ -. ps ) -> if ( ps , A , C ) = if ( ps , B , C ) ) |
7 | 2 6 | pm2.61dan | |- ( ph -> if ( ps , A , C ) = if ( ps , B , C ) ) |