Metamath Proof Explorer


Theorem ifeq1da

Description: Conditional equality. (Contributed by Jeff Madsen, 2-Sep-2009)

Ref Expression
Hypothesis ifeq1da.1
|- ( ( ph /\ ps ) -> A = B )
Assertion ifeq1da
|- ( ph -> if ( ps , A , C ) = if ( ps , B , C ) )

Proof

Step Hyp Ref Expression
1 ifeq1da.1
 |-  ( ( ph /\ ps ) -> A = B )
2 1 ifeq1d
 |-  ( ( ph /\ ps ) -> if ( ps , A , C ) = if ( ps , B , C ) )
3 iffalse
 |-  ( -. ps -> if ( ps , A , C ) = C )
4 iffalse
 |-  ( -. ps -> if ( ps , B , C ) = C )
5 3 4 eqtr4d
 |-  ( -. ps -> if ( ps , A , C ) = if ( ps , B , C ) )
6 5 adantl
 |-  ( ( ph /\ -. ps ) -> if ( ps , A , C ) = if ( ps , B , C ) )
7 2 6 pm2.61dan
 |-  ( ph -> if ( ps , A , C ) = if ( ps , B , C ) )