Metamath Proof Explorer


Theorem ifeq2d

Description: Equality deduction for conditional operator. (Contributed by NM, 16-Feb-2005)

Ref Expression
Hypothesis ifeq1d.1
|- ( ph -> A = B )
Assertion ifeq2d
|- ( ph -> if ( ps , C , A ) = if ( ps , C , B ) )

Proof

Step Hyp Ref Expression
1 ifeq1d.1
 |-  ( ph -> A = B )
2 ifeq2
 |-  ( A = B -> if ( ps , C , A ) = if ( ps , C , B ) )
3 1 2 syl
 |-  ( ph -> if ( ps , C , A ) = if ( ps , C , B ) )