Description: Conditional equality. (Contributed by Jeff Madsen, 2-Sep-2009)
Ref | Expression | ||
---|---|---|---|
Hypothesis | ifeq2da.1 | |- ( ( ph /\ -. ps ) -> A = B ) |
|
Assertion | ifeq2da | |- ( ph -> if ( ps , C , A ) = if ( ps , C , B ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ifeq2da.1 | |- ( ( ph /\ -. ps ) -> A = B ) |
|
2 | iftrue | |- ( ps -> if ( ps , C , A ) = C ) |
|
3 | iftrue | |- ( ps -> if ( ps , C , B ) = C ) |
|
4 | 2 3 | eqtr4d | |- ( ps -> if ( ps , C , A ) = if ( ps , C , B ) ) |
5 | 4 | adantl | |- ( ( ph /\ ps ) -> if ( ps , C , A ) = if ( ps , C , B ) ) |
6 | 1 | ifeq2d | |- ( ( ph /\ -. ps ) -> if ( ps , C , A ) = if ( ps , C , B ) ) |
7 | 5 6 | pm2.61dan | |- ( ph -> if ( ps , C , A ) = if ( ps , C , B ) ) |