Metamath Proof Explorer


Theorem ifeq2da

Description: Conditional equality. (Contributed by Jeff Madsen, 2-Sep-2009)

Ref Expression
Hypothesis ifeq2da.1
|- ( ( ph /\ -. ps ) -> A = B )
Assertion ifeq2da
|- ( ph -> if ( ps , C , A ) = if ( ps , C , B ) )

Proof

Step Hyp Ref Expression
1 ifeq2da.1
 |-  ( ( ph /\ -. ps ) -> A = B )
2 iftrue
 |-  ( ps -> if ( ps , C , A ) = C )
3 iftrue
 |-  ( ps -> if ( ps , C , B ) = C )
4 2 3 eqtr4d
 |-  ( ps -> if ( ps , C , A ) = if ( ps , C , B ) )
5 4 adantl
 |-  ( ( ph /\ ps ) -> if ( ps , C , A ) = if ( ps , C , B ) )
6 1 ifeq2d
 |-  ( ( ph /\ -. ps ) -> if ( ps , C , A ) = if ( ps , C , B ) )
7 5 6 pm2.61dan
 |-  ( ph -> if ( ps , C , A ) = if ( ps , C , B ) )