Step |
Hyp |
Ref |
Expression |
1 |
|
ifeqeqx.1 |
|- ( x = X -> A = C ) |
2 |
|
ifeqeqx.2 |
|- ( x = Y -> B = a ) |
3 |
|
ifeqeqx.3 |
|- ( x = X -> ( ch <-> th ) ) |
4 |
|
ifeqeqx.4 |
|- ( x = Y -> ( ch <-> ps ) ) |
5 |
|
ifeqeqx.5 |
|- ( ph -> a = C ) |
6 |
|
ifeqeqx.6 |
|- ( ( ph /\ ps ) -> th ) |
7 |
|
ifeqeqx.y |
|- ( ph -> Y e. V ) |
8 |
|
ifeqeqx.x |
|- ( ph -> X e. W ) |
9 |
|
eqeq2 |
|- ( A = if ( ch , A , B ) -> ( a = A <-> a = if ( ch , A , B ) ) ) |
10 |
|
eqeq2 |
|- ( B = if ( ch , A , B ) -> ( a = B <-> a = if ( ch , A , B ) ) ) |
11 |
|
simplr |
|- ( ( ( ph /\ x = if ( ps , X , Y ) ) /\ ch ) -> x = if ( ps , X , Y ) ) |
12 |
|
simpll |
|- ( ( ( ph /\ x = if ( ps , X , Y ) ) /\ ch ) -> ph ) |
13 |
|
simpr |
|- ( ( ( ph /\ x = if ( ps , X , Y ) ) /\ ch ) -> ch ) |
14 |
|
sbceq1a |
|- ( x = if ( ps , X , Y ) -> ( ch <-> [. if ( ps , X , Y ) / x ]. ch ) ) |
15 |
14
|
biimpd |
|- ( x = if ( ps , X , Y ) -> ( ch -> [. if ( ps , X , Y ) / x ]. ch ) ) |
16 |
11 13 15
|
sylc |
|- ( ( ( ph /\ x = if ( ps , X , Y ) ) /\ ch ) -> [. if ( ps , X , Y ) / x ]. ch ) |
17 |
|
dfsbcq |
|- ( X = if ( ps , X , Y ) -> ( [. X / x ]. ch <-> [. if ( ps , X , Y ) / x ]. ch ) ) |
18 |
|
csbeq1 |
|- ( X = if ( ps , X , Y ) -> [_ X / x ]_ A = [_ if ( ps , X , Y ) / x ]_ A ) |
19 |
18
|
eqeq2d |
|- ( X = if ( ps , X , Y ) -> ( a = [_ X / x ]_ A <-> a = [_ if ( ps , X , Y ) / x ]_ A ) ) |
20 |
17 19
|
imbi12d |
|- ( X = if ( ps , X , Y ) -> ( ( [. X / x ]. ch -> a = [_ X / x ]_ A ) <-> ( [. if ( ps , X , Y ) / x ]. ch -> a = [_ if ( ps , X , Y ) / x ]_ A ) ) ) |
21 |
|
dfsbcq |
|- ( Y = if ( ps , X , Y ) -> ( [. Y / x ]. ch <-> [. if ( ps , X , Y ) / x ]. ch ) ) |
22 |
|
csbeq1 |
|- ( Y = if ( ps , X , Y ) -> [_ Y / x ]_ A = [_ if ( ps , X , Y ) / x ]_ A ) |
23 |
22
|
eqeq2d |
|- ( Y = if ( ps , X , Y ) -> ( a = [_ Y / x ]_ A <-> a = [_ if ( ps , X , Y ) / x ]_ A ) ) |
24 |
21 23
|
imbi12d |
|- ( Y = if ( ps , X , Y ) -> ( ( [. Y / x ]. ch -> a = [_ Y / x ]_ A ) <-> ( [. if ( ps , X , Y ) / x ]. ch -> a = [_ if ( ps , X , Y ) / x ]_ A ) ) ) |
25 |
|
nfcvd |
|- ( X e. W -> F/_ x C ) |
26 |
25 1
|
csbiegf |
|- ( X e. W -> [_ X / x ]_ A = C ) |
27 |
8 26
|
syl |
|- ( ph -> [_ X / x ]_ A = C ) |
28 |
27 5
|
eqtr4d |
|- ( ph -> [_ X / x ]_ A = a ) |
29 |
28
|
adantr |
|- ( ( ph /\ ps ) -> [_ X / x ]_ A = a ) |
30 |
29
|
eqcomd |
|- ( ( ph /\ ps ) -> a = [_ X / x ]_ A ) |
31 |
30
|
a1d |
|- ( ( ph /\ ps ) -> ( [. X / x ]. ch -> a = [_ X / x ]_ A ) ) |
32 |
|
pm3.24 |
|- -. ( ps /\ -. ps ) |
33 |
4
|
sbcieg |
|- ( Y e. V -> ( [. Y / x ]. ch <-> ps ) ) |
34 |
7 33
|
syl |
|- ( ph -> ( [. Y / x ]. ch <-> ps ) ) |
35 |
34
|
anbi1d |
|- ( ph -> ( ( [. Y / x ]. ch /\ -. ps ) <-> ( ps /\ -. ps ) ) ) |
36 |
32 35
|
mtbiri |
|- ( ph -> -. ( [. Y / x ]. ch /\ -. ps ) ) |
37 |
36
|
pm2.21d |
|- ( ph -> ( ( [. Y / x ]. ch /\ -. ps ) -> a = [_ Y / x ]_ A ) ) |
38 |
37
|
imp |
|- ( ( ph /\ ( [. Y / x ]. ch /\ -. ps ) ) -> a = [_ Y / x ]_ A ) |
39 |
38
|
anass1rs |
|- ( ( ( ph /\ -. ps ) /\ [. Y / x ]. ch ) -> a = [_ Y / x ]_ A ) |
40 |
39
|
ex |
|- ( ( ph /\ -. ps ) -> ( [. Y / x ]. ch -> a = [_ Y / x ]_ A ) ) |
41 |
20 24 31 40
|
ifbothda |
|- ( ph -> ( [. if ( ps , X , Y ) / x ]. ch -> a = [_ if ( ps , X , Y ) / x ]_ A ) ) |
42 |
12 16 41
|
sylc |
|- ( ( ( ph /\ x = if ( ps , X , Y ) ) /\ ch ) -> a = [_ if ( ps , X , Y ) / x ]_ A ) |
43 |
|
csbeq1a |
|- ( x = if ( ps , X , Y ) -> A = [_ if ( ps , X , Y ) / x ]_ A ) |
44 |
43
|
eqeq2d |
|- ( x = if ( ps , X , Y ) -> ( a = A <-> a = [_ if ( ps , X , Y ) / x ]_ A ) ) |
45 |
44
|
biimprd |
|- ( x = if ( ps , X , Y ) -> ( a = [_ if ( ps , X , Y ) / x ]_ A -> a = A ) ) |
46 |
11 42 45
|
sylc |
|- ( ( ( ph /\ x = if ( ps , X , Y ) ) /\ ch ) -> a = A ) |
47 |
|
simplr |
|- ( ( ( ph /\ x = if ( ps , X , Y ) ) /\ -. ch ) -> x = if ( ps , X , Y ) ) |
48 |
|
simpll |
|- ( ( ( ph /\ x = if ( ps , X , Y ) ) /\ -. ch ) -> ph ) |
49 |
|
simpr |
|- ( ( ( ph /\ x = if ( ps , X , Y ) ) /\ -. ch ) -> -. ch ) |
50 |
14
|
notbid |
|- ( x = if ( ps , X , Y ) -> ( -. ch <-> -. [. if ( ps , X , Y ) / x ]. ch ) ) |
51 |
50
|
biimpd |
|- ( x = if ( ps , X , Y ) -> ( -. ch -> -. [. if ( ps , X , Y ) / x ]. ch ) ) |
52 |
47 49 51
|
sylc |
|- ( ( ( ph /\ x = if ( ps , X , Y ) ) /\ -. ch ) -> -. [. if ( ps , X , Y ) / x ]. ch ) |
53 |
17
|
notbid |
|- ( X = if ( ps , X , Y ) -> ( -. [. X / x ]. ch <-> -. [. if ( ps , X , Y ) / x ]. ch ) ) |
54 |
|
csbeq1 |
|- ( X = if ( ps , X , Y ) -> [_ X / x ]_ B = [_ if ( ps , X , Y ) / x ]_ B ) |
55 |
54
|
eqeq2d |
|- ( X = if ( ps , X , Y ) -> ( a = [_ X / x ]_ B <-> a = [_ if ( ps , X , Y ) / x ]_ B ) ) |
56 |
53 55
|
imbi12d |
|- ( X = if ( ps , X , Y ) -> ( ( -. [. X / x ]. ch -> a = [_ X / x ]_ B ) <-> ( -. [. if ( ps , X , Y ) / x ]. ch -> a = [_ if ( ps , X , Y ) / x ]_ B ) ) ) |
57 |
21
|
notbid |
|- ( Y = if ( ps , X , Y ) -> ( -. [. Y / x ]. ch <-> -. [. if ( ps , X , Y ) / x ]. ch ) ) |
58 |
|
csbeq1 |
|- ( Y = if ( ps , X , Y ) -> [_ Y / x ]_ B = [_ if ( ps , X , Y ) / x ]_ B ) |
59 |
58
|
eqeq2d |
|- ( Y = if ( ps , X , Y ) -> ( a = [_ Y / x ]_ B <-> a = [_ if ( ps , X , Y ) / x ]_ B ) ) |
60 |
57 59
|
imbi12d |
|- ( Y = if ( ps , X , Y ) -> ( ( -. [. Y / x ]. ch -> a = [_ Y / x ]_ B ) <-> ( -. [. if ( ps , X , Y ) / x ]. ch -> a = [_ if ( ps , X , Y ) / x ]_ B ) ) ) |
61 |
3
|
sbcieg |
|- ( X e. W -> ( [. X / x ]. ch <-> th ) ) |
62 |
8 61
|
syl |
|- ( ph -> ( [. X / x ]. ch <-> th ) ) |
63 |
62
|
notbid |
|- ( ph -> ( -. [. X / x ]. ch <-> -. th ) ) |
64 |
63
|
biimpd |
|- ( ph -> ( -. [. X / x ]. ch -> -. th ) ) |
65 |
6
|
ex |
|- ( ph -> ( ps -> th ) ) |
66 |
64 65
|
nsyld |
|- ( ph -> ( -. [. X / x ]. ch -> -. ps ) ) |
67 |
66
|
anim2d |
|- ( ph -> ( ( ps /\ -. [. X / x ]. ch ) -> ( ps /\ -. ps ) ) ) |
68 |
32 67
|
mtoi |
|- ( ph -> -. ( ps /\ -. [. X / x ]. ch ) ) |
69 |
68
|
pm2.21d |
|- ( ph -> ( ( ps /\ -. [. X / x ]. ch ) -> a = [_ X / x ]_ B ) ) |
70 |
69
|
expdimp |
|- ( ( ph /\ ps ) -> ( -. [. X / x ]. ch -> a = [_ X / x ]_ B ) ) |
71 |
|
nfcvd |
|- ( Y e. V -> F/_ x a ) |
72 |
71 2
|
csbiegf |
|- ( Y e. V -> [_ Y / x ]_ B = a ) |
73 |
7 72
|
syl |
|- ( ph -> [_ Y / x ]_ B = a ) |
74 |
73
|
adantr |
|- ( ( ph /\ -. ps ) -> [_ Y / x ]_ B = a ) |
75 |
74
|
eqcomd |
|- ( ( ph /\ -. ps ) -> a = [_ Y / x ]_ B ) |
76 |
75
|
a1d |
|- ( ( ph /\ -. ps ) -> ( -. [. Y / x ]. ch -> a = [_ Y / x ]_ B ) ) |
77 |
56 60 70 76
|
ifbothda |
|- ( ph -> ( -. [. if ( ps , X , Y ) / x ]. ch -> a = [_ if ( ps , X , Y ) / x ]_ B ) ) |
78 |
48 52 77
|
sylc |
|- ( ( ( ph /\ x = if ( ps , X , Y ) ) /\ -. ch ) -> a = [_ if ( ps , X , Y ) / x ]_ B ) |
79 |
|
csbeq1a |
|- ( x = if ( ps , X , Y ) -> B = [_ if ( ps , X , Y ) / x ]_ B ) |
80 |
79
|
eqeq2d |
|- ( x = if ( ps , X , Y ) -> ( a = B <-> a = [_ if ( ps , X , Y ) / x ]_ B ) ) |
81 |
80
|
biimprd |
|- ( x = if ( ps , X , Y ) -> ( a = [_ if ( ps , X , Y ) / x ]_ B -> a = B ) ) |
82 |
47 78 81
|
sylc |
|- ( ( ( ph /\ x = if ( ps , X , Y ) ) /\ -. ch ) -> a = B ) |
83 |
9 10 46 82
|
ifbothda |
|- ( ( ph /\ x = if ( ps , X , Y ) ) -> a = if ( ch , A , B ) ) |