Metamath Proof Explorer


Theorem ifexd

Description: Existence of the conditional operator (deduction form). (Contributed by SN, 26-Jul-2024)

Ref Expression
Hypotheses ifexd.1
|- ( ph -> A e. V )
ifexd.2
|- ( ph -> B e. W )
Assertion ifexd
|- ( ph -> if ( ps , A , B ) e. _V )

Proof

Step Hyp Ref Expression
1 ifexd.1
 |-  ( ph -> A e. V )
2 ifexd.2
 |-  ( ph -> B e. W )
3 1 elexd
 |-  ( ph -> A e. _V )
4 2 elexd
 |-  ( ph -> B e. _V )
5 3 4 ifcld
 |-  ( ph -> if ( ps , A , B ) e. _V )