Metamath Proof Explorer


Theorem iffalsed

Description: Value of the conditional operator when its first argument is false. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypothesis iffalsed.1
|- ( ph -> -. ch )
Assertion iffalsed
|- ( ph -> if ( ch , A , B ) = B )

Proof

Step Hyp Ref Expression
1 iffalsed.1
 |-  ( ph -> -. ch )
2 iffalse
 |-  ( -. ch -> if ( ch , A , B ) = B )
3 1 2 syl
 |-  ( ph -> if ( ch , A , B ) = B )