Metamath Proof Explorer


Theorem iffalsei

Description: Inference associated with iffalse . (Contributed by BJ, 7-Oct-2018)

Ref Expression
Hypothesis iffalsei.1
|- -. ph
Assertion iffalsei
|- if ( ph , A , B ) = B

Proof

Step Hyp Ref Expression
1 iffalsei.1
 |-  -. ph
2 iffalse
 |-  ( -. ph -> if ( ph , A , B ) = B )
3 1 2 ax-mp
 |-  if ( ph , A , B ) = B