Metamath Proof Explorer


Theorem iffv

Description: Move a conditional outside of a function. (Contributed by Thierry Arnoux, 28-Sep-2018)

Ref Expression
Assertion iffv
|- ( if ( ph , F , G ) ` A ) = if ( ph , ( F ` A ) , ( G ` A ) )

Proof

Step Hyp Ref Expression
1 fveq1
 |-  ( if ( ph , F , G ) = F -> ( if ( ph , F , G ) ` A ) = ( F ` A ) )
2 fveq1
 |-  ( if ( ph , F , G ) = G -> ( if ( ph , F , G ) ` A ) = ( G ` A ) )
3 1 2 ifsb
 |-  ( if ( ph , F , G ) ` A ) = if ( ph , ( F ` A ) , ( G ` A ) )