Description: Prove if ( A e. ~H , A , 0h ) e. ~H . (Contributed by David A. Wheeler, 7-Dec-2018) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | ifhvhv0 | |- if ( A e. ~H , A , 0h ) e. ~H |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-hv0cl | |- 0h e. ~H |
|
2 | 1 | elimel | |- if ( A e. ~H , A , 0h ) e. ~H |