Metamath Proof Explorer


Theorem ifnefals

Description: Deduce falsehood from a conditional operator value. (Contributed by Thierry Arnoux, 20-Feb-2025)

Ref Expression
Assertion ifnefals
|- ( ( A =/= B /\ if ( ph , A , B ) = B ) -> -. ph )

Proof

Step Hyp Ref Expression
1 iftrue
 |-  ( ph -> if ( ph , A , B ) = A )
2 1 adantl
 |-  ( ( ( A =/= B /\ if ( ph , A , B ) = B ) /\ ph ) -> if ( ph , A , B ) = A )
3 simplr
 |-  ( ( ( A =/= B /\ if ( ph , A , B ) = B ) /\ ph ) -> if ( ph , A , B ) = B )
4 simpll
 |-  ( ( ( A =/= B /\ if ( ph , A , B ) = B ) /\ ph ) -> A =/= B )
5 4 necomd
 |-  ( ( ( A =/= B /\ if ( ph , A , B ) = B ) /\ ph ) -> B =/= A )
6 3 5 eqnetrd
 |-  ( ( ( A =/= B /\ if ( ph , A , B ) = B ) /\ ph ) -> if ( ph , A , B ) =/= A )
7 6 neneqd
 |-  ( ( ( A =/= B /\ if ( ph , A , B ) = B ) /\ ph ) -> -. if ( ph , A , B ) = A )
8 2 7 pm2.65da
 |-  ( ( A =/= B /\ if ( ph , A , B ) = B ) -> -. ph )