Step |
Hyp |
Ref |
Expression |
1 |
|
iftrue |
|- ( ph -> if ( ph , A , B ) = A ) |
2 |
1
|
adantl |
|- ( ( ( A =/= B /\ if ( ph , A , B ) = B ) /\ ph ) -> if ( ph , A , B ) = A ) |
3 |
|
simplr |
|- ( ( ( A =/= B /\ if ( ph , A , B ) = B ) /\ ph ) -> if ( ph , A , B ) = B ) |
4 |
|
simpll |
|- ( ( ( A =/= B /\ if ( ph , A , B ) = B ) /\ ph ) -> A =/= B ) |
5 |
4
|
necomd |
|- ( ( ( A =/= B /\ if ( ph , A , B ) = B ) /\ ph ) -> B =/= A ) |
6 |
3 5
|
eqnetrd |
|- ( ( ( A =/= B /\ if ( ph , A , B ) = B ) /\ ph ) -> if ( ph , A , B ) =/= A ) |
7 |
6
|
neneqd |
|- ( ( ( A =/= B /\ if ( ph , A , B ) = B ) /\ ph ) -> -. if ( ph , A , B ) = A ) |
8 |
2 7
|
pm2.65da |
|- ( ( A =/= B /\ if ( ph , A , B ) = B ) -> -. ph ) |