Step |
Hyp |
Ref |
Expression |
1 |
|
ifpbi123d.1 |
|- ( ph -> ( ps <-> ta ) ) |
2 |
|
ifpbi123d.2 |
|- ( ph -> ( ch <-> et ) ) |
3 |
|
ifpbi123d.3 |
|- ( ph -> ( th <-> ze ) ) |
4 |
1 2
|
imbi12d |
|- ( ph -> ( ( ps -> ch ) <-> ( ta -> et ) ) ) |
5 |
1 3
|
orbi12d |
|- ( ph -> ( ( ps \/ th ) <-> ( ta \/ ze ) ) ) |
6 |
4 5
|
anbi12d |
|- ( ph -> ( ( ( ps -> ch ) /\ ( ps \/ th ) ) <-> ( ( ta -> et ) /\ ( ta \/ ze ) ) ) ) |
7 |
|
dfifp3 |
|- ( if- ( ps , ch , th ) <-> ( ( ps -> ch ) /\ ( ps \/ th ) ) ) |
8 |
|
dfifp3 |
|- ( if- ( ta , et , ze ) <-> ( ( ta -> et ) /\ ( ta \/ ze ) ) ) |
9 |
6 7 8
|
3bitr4g |
|- ( ph -> ( if- ( ps , ch , th ) <-> if- ( ta , et , ze ) ) ) |