Metamath Proof Explorer


Theorem ifpbi123dOLD

Description: Obsolete version of ifpbi123d as of 17-Apr-2024. (Contributed by AV, 30-Dec-2020) (New usage is discouraged.) (Proof modification is discouraged.)

Ref Expression
Hypotheses ifpbi123d.1
|- ( ph -> ( ps <-> ta ) )
ifpbi123d.2
|- ( ph -> ( ch <-> et ) )
ifpbi123d.3
|- ( ph -> ( th <-> ze ) )
Assertion ifpbi123dOLD
|- ( ph -> ( if- ( ps , ch , th ) <-> if- ( ta , et , ze ) ) )

Proof

Step Hyp Ref Expression
1 ifpbi123d.1
 |-  ( ph -> ( ps <-> ta ) )
2 ifpbi123d.2
 |-  ( ph -> ( ch <-> et ) )
3 ifpbi123d.3
 |-  ( ph -> ( th <-> ze ) )
4 1 2 anbi12d
 |-  ( ph -> ( ( ps /\ ch ) <-> ( ta /\ et ) ) )
5 1 notbid
 |-  ( ph -> ( -. ps <-> -. ta ) )
6 5 3 anbi12d
 |-  ( ph -> ( ( -. ps /\ th ) <-> ( -. ta /\ ze ) ) )
7 4 6 orbi12d
 |-  ( ph -> ( ( ( ps /\ ch ) \/ ( -. ps /\ th ) ) <-> ( ( ta /\ et ) \/ ( -. ta /\ ze ) ) ) )
8 df-ifp
 |-  ( if- ( ps , ch , th ) <-> ( ( ps /\ ch ) \/ ( -. ps /\ th ) ) )
9 df-ifp
 |-  ( if- ( ta , et , ze ) <-> ( ( ta /\ et ) \/ ( -. ta /\ ze ) ) )
10 7 8 9 3bitr4g
 |-  ( ph -> ( if- ( ps , ch , th ) <-> if- ( ta , et , ze ) ) )