Step |
Hyp |
Ref |
Expression |
1 |
|
ifpbi123d.1 |
|- ( ph -> ( ps <-> ta ) ) |
2 |
|
ifpbi123d.2 |
|- ( ph -> ( ch <-> et ) ) |
3 |
|
ifpbi123d.3 |
|- ( ph -> ( th <-> ze ) ) |
4 |
1 2
|
anbi12d |
|- ( ph -> ( ( ps /\ ch ) <-> ( ta /\ et ) ) ) |
5 |
1
|
notbid |
|- ( ph -> ( -. ps <-> -. ta ) ) |
6 |
5 3
|
anbi12d |
|- ( ph -> ( ( -. ps /\ th ) <-> ( -. ta /\ ze ) ) ) |
7 |
4 6
|
orbi12d |
|- ( ph -> ( ( ( ps /\ ch ) \/ ( -. ps /\ th ) ) <-> ( ( ta /\ et ) \/ ( -. ta /\ ze ) ) ) ) |
8 |
|
df-ifp |
|- ( if- ( ps , ch , th ) <-> ( ( ps /\ ch ) \/ ( -. ps /\ th ) ) ) |
9 |
|
df-ifp |
|- ( if- ( ta , et , ze ) <-> ( ( ta /\ et ) \/ ( -. ta /\ ze ) ) ) |
10 |
7 8 9
|
3bitr4g |
|- ( ph -> ( if- ( ps , ch , th ) <-> if- ( ta , et , ze ) ) ) |