Metamath Proof Explorer


Theorem ifpbi23d

Description: Equivalence deduction for conditional operator for propositions. Convenience theorem for a frequent case. (Contributed by Wolf Lammen, 28-Apr-2024)

Ref Expression
Hypotheses ifpbi23d.1
|- ( ph -> ( ch <-> et ) )
ifpbi23d.2
|- ( ph -> ( th <-> ze ) )
Assertion ifpbi23d
|- ( ph -> ( if- ( ps , ch , th ) <-> if- ( ps , et , ze ) ) )

Proof

Step Hyp Ref Expression
1 ifpbi23d.1
 |-  ( ph -> ( ch <-> et ) )
2 ifpbi23d.2
 |-  ( ph -> ( th <-> ze ) )
3 biidd
 |-  ( ph -> ( ps <-> ps ) )
4 3 1 2 ifpbi123d
 |-  ( ph -> ( if- ( ps , ch , th ) <-> if- ( ps , et , ze ) ) )