Metamath Proof Explorer


Theorem ifpdfbi

Description: Define the biconditional as conditional logic operator. (Contributed by RP, 20-Apr-2020) (Proof shortened by Wolf Lammen, 30-Apr-2024)

Ref Expression
Assertion ifpdfbi
|- ( ( ph <-> ps ) <-> if- ( ph , ps , -. ps ) )

Proof

Step Hyp Ref Expression
1 con34b
 |-  ( ( ps -> ph ) <-> ( -. ph -> -. ps ) )
2 1 anbi2i
 |-  ( ( ( ph -> ps ) /\ ( ps -> ph ) ) <-> ( ( ph -> ps ) /\ ( -. ph -> -. ps ) ) )
3 dfbi2
 |-  ( ( ph <-> ps ) <-> ( ( ph -> ps ) /\ ( ps -> ph ) ) )
4 dfifp2
 |-  ( if- ( ph , ps , -. ps ) <-> ( ( ph -> ps ) /\ ( -. ph -> -. ps ) ) )
5 2 3 4 3bitr4i
 |-  ( ( ph <-> ps ) <-> if- ( ph , ps , -. ps ) )