Metamath Proof Explorer


Theorem ifpid

Description: Value of the conditional operator for propositions when the same proposition is returned in either case. Analogue for propositions of ifid . This is essentially pm4.42 . (Contributed by BJ, 20-Sep-2019)

Ref Expression
Assertion ifpid
|- ( if- ( ph , ps , ps ) <-> ps )

Proof

Step Hyp Ref Expression
1 ifptru
 |-  ( ph -> ( if- ( ph , ps , ps ) <-> ps ) )
2 ifpfal
 |-  ( -. ph -> ( if- ( ph , ps , ps ) <-> ps ) )
3 1 2 pm2.61i
 |-  ( if- ( ph , ps , ps ) <-> ps )