Metamath Proof Explorer


Theorem ifpimpda

Description: Separation of the values of the conditional operator for propositions. (Contributed by AV, 30-Dec-2020) (Proof shortened by Wolf Lammen, 27-Feb-2021)

Ref Expression
Hypotheses ifpimpda.1
|- ( ( ph /\ ps ) -> ch )
ifpimpda.2
|- ( ( ph /\ -. ps ) -> th )
Assertion ifpimpda
|- ( ph -> if- ( ps , ch , th ) )

Proof

Step Hyp Ref Expression
1 ifpimpda.1
 |-  ( ( ph /\ ps ) -> ch )
2 ifpimpda.2
 |-  ( ( ph /\ -. ps ) -> th )
3 1 ex
 |-  ( ph -> ( ps -> ch ) )
4 2 ex
 |-  ( ph -> ( -. ps -> th ) )
5 dfifp2
 |-  ( if- ( ps , ch , th ) <-> ( ( ps -> ch ) /\ ( -. ps -> th ) ) )
6 3 4 5 sylanbrc
 |-  ( ph -> if- ( ps , ch , th ) )