Description: Separation of the values of the conditional operator for propositions. (Contributed by AV, 30-Dec-2020) (Proof shortened by Wolf Lammen, 27-Feb-2021)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ifpimpda.1 | |- ( ( ph /\ ps ) -> ch ) |
|
ifpimpda.2 | |- ( ( ph /\ -. ps ) -> th ) |
||
Assertion | ifpimpda | |- ( ph -> if- ( ps , ch , th ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ifpimpda.1 | |- ( ( ph /\ ps ) -> ch ) |
|
2 | ifpimpda.2 | |- ( ( ph /\ -. ps ) -> th ) |
|
3 | 1 | ex | |- ( ph -> ( ps -> ch ) ) |
4 | 2 | ex | |- ( ph -> ( -. ps -> th ) ) |
5 | dfifp2 | |- ( if- ( ps , ch , th ) <-> ( ( ps -> ch ) /\ ( -. ps -> th ) ) ) |
|
6 | 3 4 5 | sylanbrc | |- ( ph -> if- ( ps , ch , th ) ) |