Description: Separation of the values of the conditional operator for propositions. (Contributed by AV, 30-Dec-2020) (Proof shortened by Wolf Lammen, 27-Feb-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ifpimpda.1 | |- ( ( ph /\ ps ) -> ch ) |
|
| ifpimpda.2 | |- ( ( ph /\ -. ps ) -> th ) |
||
| Assertion | ifpimpda | |- ( ph -> if- ( ps , ch , th ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ifpimpda.1 | |- ( ( ph /\ ps ) -> ch ) |
|
| 2 | ifpimpda.2 | |- ( ( ph /\ -. ps ) -> th ) |
|
| 3 | 1 | ex | |- ( ph -> ( ps -> ch ) ) |
| 4 | 2 | ex | |- ( ph -> ( -. ps -> th ) ) |
| 5 | dfifp2 | |- ( if- ( ps , ch , th ) <-> ( ( ps -> ch ) /\ ( -. ps -> th ) ) ) |
|
| 6 | 3 4 5 | sylanbrc | |- ( ph -> if- ( ps , ch , th ) ) |