Description: Conditional operator for the negation of a proposition. (Contributed by BJ, 30-Sep-2019) (Proof shortened by Wolf Lammen, 5-May-2024)
Ref | Expression | ||
---|---|---|---|
Assertion | ifpn | |- ( if- ( ph , ps , ch ) <-> if- ( -. ph , ch , ps ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ancom | |- ( ( ( -. ph \/ ps ) /\ ( -. ph -> ch ) ) <-> ( ( -. ph -> ch ) /\ ( -. ph \/ ps ) ) ) |
|
2 | dfifp5 | |- ( if- ( ph , ps , ch ) <-> ( ( -. ph \/ ps ) /\ ( -. ph -> ch ) ) ) |
|
3 | dfifp3 | |- ( if- ( -. ph , ch , ps ) <-> ( ( -. ph -> ch ) /\ ( -. ph \/ ps ) ) ) |
|
4 | 1 2 3 | 3bitr4i | |- ( if- ( ph , ps , ch ) <-> if- ( -. ph , ch , ps ) ) |