Metamath Proof Explorer


Theorem ifpn

Description: Conditional operator for the negation of a proposition. (Contributed by BJ, 30-Sep-2019) (Proof shortened by Wolf Lammen, 5-May-2024)

Ref Expression
Assertion ifpn
|- ( if- ( ph , ps , ch ) <-> if- ( -. ph , ch , ps ) )

Proof

Step Hyp Ref Expression
1 ancom
 |-  ( ( ( -. ph \/ ps ) /\ ( -. ph -> ch ) ) <-> ( ( -. ph -> ch ) /\ ( -. ph \/ ps ) ) )
2 dfifp5
 |-  ( if- ( ph , ps , ch ) <-> ( ( -. ph \/ ps ) /\ ( -. ph -> ch ) ) )
3 dfifp3
 |-  ( if- ( -. ph , ch , ps ) <-> ( ( -. ph -> ch ) /\ ( -. ph \/ ps ) ) )
4 1 2 3 3bitr4i
 |-  ( if- ( ph , ps , ch ) <-> if- ( -. ph , ch , ps ) )