Metamath Proof Explorer


Theorem ifpnOLD

Description: Obsolete version of ifpn as of 5-May-2024. (Contributed by BJ, 30-Sep-2019) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion ifpnOLD
|- ( if- ( ph , ps , ch ) <-> if- ( -. ph , ch , ps ) )

Proof

Step Hyp Ref Expression
1 notnotb
 |-  ( ph <-> -. -. ph )
2 1 imbi1i
 |-  ( ( ph -> ps ) <-> ( -. -. ph -> ps ) )
3 2 anbi2ci
 |-  ( ( ( ph -> ps ) /\ ( -. ph -> ch ) ) <-> ( ( -. ph -> ch ) /\ ( -. -. ph -> ps ) ) )
4 dfifp2
 |-  ( if- ( ph , ps , ch ) <-> ( ( ph -> ps ) /\ ( -. ph -> ch ) ) )
5 dfifp2
 |-  ( if- ( -. ph , ch , ps ) <-> ( ( -. ph -> ch ) /\ ( -. -. ph -> ps ) ) )
6 3 4 5 3bitr4i
 |-  ( if- ( ph , ps , ch ) <-> if- ( -. ph , ch , ps ) )